1
|
Borah SM, Kma L, Darjee MS, Deka D, Lyngdoh A, Sharan RN, Baruah TJ. Apigenin promotes cell death in NCI-H23 cells by upregulation of PTEN: potential involvement of the binding of apigenin with WWP2 protein. J Biomol Struct Dyn 2024; 42:9705-9719. [PMID: 37870050 DOI: 10.1080/07391102.2023.2272743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023]
Abstract
The tumour suppressor protein PTEN is often down-regulated in non-small cell lung cancer. A major protein promoting the lowering of the PTEN protein is WWP2. Polyphenols have been shown to promote the expression of tumour suppressor genes like PTEN. We carry out the study to check for the ability of apigenin to bind with the WWP2 protein using in-silico investigation comprising docking and simulation. We checked for the cytotoxic effect of apigenin upon the non-small cell lung cancer cell line NCI-H23. We checked the PTEN expression status at the gene and protein levels. The expression levels of the apoptotic regulators BCL2, BAX and CASPASE3 genes along with the activity levels of the caspase-3 protein were checked. The ultrastructure of the cells was analysed. Our Autodock analysis showed that apigenin bound favourably with the WWP2 protein. Molecular dynamics simulation revealed that apigenin increased the parameters of RMSD, Rg and SASA when bound with the WWP2 protein. The protein-ligand complex had hydrogen bonding and majorly van der Wal's interactions. PCA analysis revealed greater fluctuations in the apigenin-bound state of the protein. The mutant form of the WWP2 revealed similar results in the presence of apigenin. Apigenin showed efficacy against the NCI-H23 cell line and promoted PTEN protein levels, lowered BCL2 gene expression and up-regulated BAX and CASPASE3 gene expression. Increased caspase-3 activity and ultra-structural analysis revealed the occurrence of apoptosis. Thus the binding of apigenin with WWP2 could promote PTEN protein levels and lead to apoptotic activity in NCI-H23 cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, India
| | - Lakhon Kma
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | | - Dikshit Deka
- Department of Biochemistry, Assam Royal Global University, Guwahati, India
| | - Anisha Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Rajesh N Sharan
- Department of Biochemistry, Assam Royal Global University, Guwahati, India
| | | |
Collapse
|
2
|
Wang X, Weintraub RA. Recent Developments in Isoindole Chemistry. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractIsoindoles are highly reactive aromatic heterocycles that have a variety of important applications in areas such as medicine, analytical detection, and solar energy. Due to their highly reactive nature, isoindoles can be used to access their derivatives, which possess a diverse array of biological activities. However, their reactivity also makes isoindoles unstable and thus, difficult to prepare. Consequently, there has been a need for the development of novel methods that address some of the synthetic challenges and limitations, as well as reactions that utilize isoindoles to access potentially useful compounds. This review will give an overview of the novel reactions reported within the past decade (2012 to 2022) that involve 2H- and 1H-isoindoles and fused isoindoles as reactants, key intermediates, or products. This review is divided into two parts, with the first part focusing on the synthesis of isoindoles and the second part focusing on reactions of isoindoles. The scopes and limitations of the methods described therein will be discussed and the significance of their contributions to the literature will be highlighted. Similar reactions will also be compared.1 Introduction2 Synthesis of Isoindoles2.1 Synthesis of 2H-Isoindoles2.2 Synthesis of 1H-Isoindoles3 Reactions of Isoindoles3.1 Reactions of 2H-Isoindoles3.2 Reactions of 1H-Isoindoles4 Conclusions
Collapse
|
3
|
Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, Kurzrock R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev 2022; 110:102461. [PMID: 36058143 DOI: 10.1016/j.ctrv.2022.102461] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Strategies for unlocking immunosuppression in the tumor microenvironment have been investigated to overcome resistance to first-generation immune checkpoint blockade with anti- programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4) agents. Indoleamine 2,3-dioxygenase (IDO) 1, an enzyme catabolizing tryptophan to kynurenine, creates an immunosuppressive environment in preclinical studies. Early phase clinical trials investigating inhibition of IDO1, especially together with checkpoint blockade, provided promising results. Unfortunately, the phase 3 trial of the IDO1 inhibitor epacadostat combined with the PD-1 inhibitor pembrolizumab did not show clinical benefit when compared with pembrolizumab monotherapy in patients with advanced malignant melanoma, which dampened enthusiasm for IDO inhibitors. Even so, several molecules, such as the aryl hydrocarbon receptor and tryptophan 2,3-dioxygenase, were reported as additional potential targets for the modulation of the tryptophan pathway, which might enhance clinical effectiveness. Furthermore, the combination of IDO pathway blockade with agents inhibiting other signals, such as those generated by PIK3CA mutations that may accompany IDO1 upregulation, may be a novel way to enhance activity. Importantly, IDO1 expression level varies by tumor type and among patients with the same tumor type, suggesting that patient selection based on expression levels of IDO1 may be warranted in clinical trials.
Collapse
Affiliation(s)
- Yu Fujiwara
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, United States.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, United States.
| | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Evaluation of Novel Inhibitors of Tryptophan Dioxygenases for Enzyme and Species Selectivity Using Engineered Tumour Cell Lines Expressing Either Murine or Human IDO1 or TDO2. Pharmaceuticals (Basel) 2022; 15:ph15091090. [PMID: 36145311 PMCID: PMC9501369 DOI: 10.3390/ph15091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is commonly expressed by cancers as a mechanism for evading the immune system. Preclinical and clinical studies have indicated the potential of combining IDO1 inhibitors with immune therapies for the treatment of cancer, strengthening an interest in the discovery of novel dioxygenase inhibitors for reversing tumour-mediated immune suppression. To facilitate the discovery, development and investigation of novel small molecule inhibitors of IDO1 and its hepatic isozyme tryptophan dioxygenase (TDO2), murine tumour cells were engineered to selectively express either murine or human IDO1 and TDO2 for use as tools to dissect both the species specificity and isoenzyme selectivity of newly discovered inhibitors. Lewis lung carcinoma (LLTC) lines were engineered to express either murine or human IDO1 for use to test species selectivity of the novel inhibitors; in addition, GL261 glioma lines were engineered to express either human IDO1 or human TDO2 and used to test the isoenzyme selectivity of individual inhibitors in cell-based assays. The 20 most potent inhibitors against recombinant human IDO1 enzyme, discovered from a commissioned screening of 40,000 compounds in the Australian WEHI compound library, returned comparable IC50 values against murine or human IDO1 in cell-based assays using the LLTC-mIDO1 and LLTC-hIDO1 line, respectively. To test the in vivo activity of the hits, transfected lines were inoculated into syngeneic C57Bl/6 mice. Individual LLTC-hIDO1 tumours showed variable expression of human IDO1 in contrast to GL261-hIDO1 tumours which were homogenous in their IDO1 expression and were subsequently used for in vivo studies. W-0019482, the most potent IDO1 inhibitor identified from cell-based assays, reduced plasma and intratumoural ratios of kynurenine to tryptophan (K:T) and delayed the growth of subcutaneous GL261-hIDO1 tumours in mice. Synthetic modification of W-0019482 generated analogues with dual IDO1/TDO2 inhibitory activity, as well as inhibitors that were selective for either TDO2 or IDO1. These results demonstrate the versatility of W-0019482 as a lead in generating all three subclasses of tryptophan dioxygenase inhibitors which can be applied for investigating the individual roles and interactions between IDO1 and TDO2 in driving cancer-mediated immune suppression.
Collapse
|
5
|
Dual-target inhibitors of indoleamine 2, 3 dioxygenase 1 (Ido1): A promising direction in cancer immunotherapy. Eur J Med Chem 2022; 238:114524. [PMID: 35696861 DOI: 10.1016/j.ejmech.2022.114524] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that catalyzes the kynurenine (Kyn) pathway of tryptophan metabolism in the first step, and the kynurenine pathway plays a fundamental role in immunosuppression in the tumor microenvironment. Therefore, researchers are vigorously developing IDO1 inhibitors, hoping to apply them to cancer immunotherapy. Nowadays, there have been 11 kinds of IDO1 inhibitors entering clinical trials, among which many inhibitors have shown good tumor inhibitory effect in phase I/II clinical trials. But the phase III study of the most promising IDO1 inhibitor compound 29 (Epacadostat) failed in 2018, which may be caused by the compensation effect offered by tryptophan 2,3-dioxygenase (TDO), the mismatched drug combination strategies, or other reasons. Luckily, dual-target inhibitors show great potential and advantages in solving these problems. In recent years, many studies have linked IDO1 to popular targets and selected many IDO1 dual-target inhibitors through pharmacophore fusion strategy and library construction, which enhance the tumor inhibitory effect and reduce side effects. Currently, three kinds of IDO1/TDO dual-target inhibitors have entered clinical trials, and extensive studies have been developing on IDO1 dual-target inhibitors. In this review, we summarize the IDO1 dual-target inhibitors developed in recent years and focus on the structure optimization process, structure-activity relationship, and the efficacy of in vitro and in vivo experiments, shedding a light on the pivotal significance of IDO1 dual-target inhibitors in the treatment of cancer, providing inspiration for the development of new IDO1 dual-target inhibitors.
Collapse
|
6
|
Chang YC, Shieh MC, Chang YH, Huang WL, Su WC, Cheng FY, Cheung CHA. Development of a cancer cells self‑activating and miR‑125a‑5p expressing poly‑pharmacological nanodrug for cancer treatment. Int J Mol Med 2022; 50:102. [PMID: 35703361 PMCID: PMC9239037 DOI: 10.3892/ijmm.2022.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells can acquire resistance to targeted therapeutic agents when the designated targets or their downstream signaling molecules develop protein conformational or activity changes. There is an increasing interest in developing poly-pharmacologic anticancer agents to target multiple oncoproteins or signaling pathways in cancer cells. The microRNA 125a-5p (miR-125a-5p) is a tumor suppressor, and its expression has frequently been downregulated in tumors. By contrast, the anti-apoptotic molecule BIRC5/SURVIVIN is highly expressed in tumors but not in the differentiated normal tissues. In the present study, the development of a BIRC5 gene promoter-driven, miR-125a-5p expressing, poly-L-lysine-conjugated magnetite iron poly-pharmacologic nanodrug (pL-MNP-pSur-125a) was reported. The cancer cells self-activating property and the anticancer effects of this nanodrug were examined in both the multidrug efflux protein ABCB1/MDR1-expressing/-non-expressing cancer cells in vitro and in vivo. It was demonstrated that pL-MNP-pSur-125a decreased the expression of ERBB2/HER2, HDAC5, BIRC5, and SP1, which are hot therapeutic targets for cancer in vitro. Notably, pL-MNP-pSur-125a also downregulated the expression of TDO2 in the human KB cervical carcinoma cells. PL-MNP-pSur-125a decreased the viability of various BIRC5-expressing cancer cells, regardless of the tissue origin or the expression of ABCB1, but not of the human BIRC5-non-expressing HMEC-1 endothelial cells. In vivo, pL-MNP-pSur-125a exhibited potent antitumor growth effects, but without inducing liver toxicity, in various zebrafish human-ABCB1-expressing and ABCB1-non-expressing tumor xenograft models. In conclusion, pL-MNP-pSur-125a is an easy-to-prepare and a promising poly-pharmacological anticancer nanodrug that has the potential to manage numerous malignancies, particularly for patients with BIRC5/ABCB1-related drug resistance after prolonged chemotherapeutic treatments.
Collapse
Affiliation(s)
- Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Min-Chieh Shieh
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chiayi 600566, Taiwan, R.O.C
| | - Yen-Hsuan Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Fong-Yu Cheng
- Department of Chemistry, College of Sciences, Chinese Culture University, Taipei 111396, Taiwan, R.O.C
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| |
Collapse
|
7
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|