1
|
Deng Z, Li J, Zhu P, Wang J, Kong Y, Hu Y, Cai J, Dong C. Quinazolinones as Potential Anticancer Agents: Synthesis and Action Mechanisms. Biomolecules 2025; 15:210. [PMID: 40001513 PMCID: PMC11852416 DOI: 10.3390/biom15020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Quinazolinones, essential quinazoline derivatives, exhibit diverse biological activities with applications in pharmaceuticals and insecticides. Some derivatives have already been developed as commercial drugs. Given the rising cancer incidence, there is a critical need for new anticancer agents, and quinazolinones show promising potential in this domain. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, the structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives, to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Zhijiang Deng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Jieming Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Pengbo Zhu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Wang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Yuanfang Kong
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yulong Hu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Juntao Cai
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Chunhong Dong
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| |
Collapse
|
2
|
Zhu J, Meng H, Li X, Jia L, Xu L, Cai Y, Chen Y, Jin J, Yu L. Optimization of virtual screening against phosphoinositide 3-kinase delta: Integration of common feature pharmacophore and multicomplex-based molecular docking. Comput Biol Chem 2024; 109:108011. [PMID: 38198965 DOI: 10.1016/j.compbiolchem.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Extensive research has accumulated which suggests that phosphatidylinositol 3-kinase delta (PI3Kδ) is closely related to the occurrence and development of various human diseases, making PI3Kδ a highly promising drug target. However, PI3Kδ exhibits high homology with other members of the PI3K family, which poses significant challenges to the development of PI3Kδ inhibitors. Therefore, in the present study, a hybrid virtual screening (VS) approach based on a ligand-based pharmacophore model and multicomplex-based molecular docking was developed to find novel PI3Kδ inhibitors. 13 crystal structures of the human PI3Kδ-inhibitor complex were collected to establish models. The inhibitors were extracted from the crystal structures to generate the common feature pharmacophore. The crystallographic protein structures were used to construct a naïve Bayesian classification model that integrates molecular docking based on multiple PI3Kδ conformations. Subsequently, three VS protocols involving sequential or parallel molecular docking and pharmacophore approaches were employed. External predictions demonstrated that the protocol combining molecular docking and pharmacophore resulted in a significant improvement in the enrichment of active PI3Kδ inhibitors. Finally, the optimal VS method was utilized for virtual screening against a large chemical database, and some potential hit compounds were identified. We hope that the developed VS strategy will provide valuable guidance for the discovery of novel PI3Kδ inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Huiqin Meng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
3
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|