1
|
Ruenchit P. Exploring bioactive molecules released during inter- and intraspecific competition: A paradigm for novel antiparasitic drug discovery and design for human use. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100256. [PMID: 40292016 PMCID: PMC12022652 DOI: 10.1016/j.crpvbd.2025.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Many antiparasitic drugs have become obsolete and ineffective in treating parasitic diseases. This ineffectiveness arises from parasite drug resistance, high toxicity, and low drug efficacy. Thus, the discovery of novel agents is urgently needed to control parasitic diseases. Various strategies are employed in drug discovery, design, and development. This review highlights the paradigm of searching for bioactive molecules produced during inter- and intraspecific competition among organisms, particularly between microbes and parasites, as a strategy for de novo antiparasitic drug discovery. Competitive interactions occur when individuals of the same or different species coexist in overlapping niches and compete for space and resources. These interactions are well recognized. Therefore, bioactive molecules released during these interactions are promising targets for novel drug discovery. Compelling data indicate that microbes remain a potential source for the discovery of novel antiparasitic drugs because of their diversity. Many antimicrobial producers in nature have yet to be isolated and investigated. This body of evidence underscores the success of numerous therapeutic drugs, including penicillin, β-lactams, and tetracyclines, which have been successfully discovered and developed for treating infectious diseases. This review comprehensively covers these concepts, with a particular focus on inter- and intraspecific competition in the discovery of novel antiparasitic agents. This approach will pave the way for identifying alternative strategies to control and eradicate parasitic diseases that continue to threaten human health. Additionally, this review discusses current antiparasitic drugs and their mechanisms of action, limitations, and existing gaps. This discussion emphasizes the ongoing need to explore novel antiparasitic drugs.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
2
|
Costa ALO, dos Santos M, Dantas-Vieira GC, Lopes REN, Vommaro RC, Martins-Duarte ÉS. Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites. Microorganisms 2024; 12:2602. [PMID: 39770804 PMCID: PMC11676817 DOI: 10.3390/microorganisms12122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Toxoplasma gondii is a protozoan, and the etiologic agent of toxoplasmosis, a disease that causes high mortality in immunocompromised individuals and newborns. Despite the medical importance of toxoplasmosis, few drugs, which are associated with side effects and parasite resistance, are available for its treatment. Here, we show a screening of molecules present in COVID-Box to discover new hits with anti-T. gondii activity. COVID-Box contains 160 molecules with known or predicted activity against SARS-CoV-2. Our analysis selected 23 COVID-Box molecules that can inhibit the tachyzoite forms of the RH strain of T. gondii in vitro by more than 70% at 1 µM after seven days of treatment. The inhibitory curves showed that most of these molecules inhibited the proliferation of tachyzoites with IC50 values below 0.80 µM; Cycloheximide and (-)-anisomycin were the most active drugs, with IC50 values of 0.02 μM. Cell viability assays showed that the compounds are not toxic at active concentrations, and most are highly selective for parasites. Overall, all 23 compounds were selective, and for two of them (apilimod and midostaurin), this is the first report of activity against T. gondii. To better understand the effect of the drugs, we analyzed the effect of nine of them on the ultrastructure of T. gondii using transmission electron microscopy. After treatment with the selected drugs, the main changes observed in parasite morphology were the arrestment of cell division and organelle alterations.
Collapse
Affiliation(s)
- Andréia Luiza Oliveira Costa
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Mike dos Santos
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Giulia Caroline Dantas-Vieira
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Rosálida Estevam Nazar Lopes
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Rossiane Claudia Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Érica S. Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| |
Collapse
|
3
|
dos Santos M, Oliveira Costa AL, Vaz GHDS, de Souza GCA, Vitor RWDA, Martins-Duarte ÉS. Medicines for Malaria Venture Pandemic Box In Vitro Screening Identifies Compounds Highly Active against the Tachyzoite Stage of Toxoplasma gondii. Trop Med Infect Dis 2023; 8:510. [PMID: 38133442 PMCID: PMC10747034 DOI: 10.3390/tropicalmed8120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Toxoplasmosis is a disease that causes high mortality in immunocompromised individuals, such as AIDS patients, and sequelae in congenitally infected newborns. Despite its great medical importance, there are few treatments available and these are associated with adverse events and resistance. In this work, after screening the drugs present in the Medicines for Malaria Venture Pandemic Box, we found new hits with anti-Toxoplasma gondii activity. Through our analysis, we selected twenty-three drugs or drug-like compounds that inhibited the proliferation of T. gondii tachyzoites in vitro by more than 50% at a concentration of 1 µM after seven days of treatment. Nineteen of these compounds have never been reported active before against T. gondii. Inhibitory curves showed that most of these drugs were able to inhibit parasite replication with IC50 values on the nanomolar scale. To better understand the unprecedented effect of seven compounds against T. gondii tachyzoites, an ultrastructural analysis was carried out using transmission electron microscopy. Treatment with 0.25 µM verdinexor, 3 nM MMV1580844, and 0.25 µM MMV019724 induced extensive vacuolization, complete ultrastructural disorganization, and lytic effects in the parasite, respectively, and all of them showed alterations in the division process. Treatment with 1 µM Eberconazole, 0.5 µM MMV1593541, 1 µM MMV642550, 1 µM RWJ-67657, and 1 µM URMC-099-C also caused extensive vacuolization in the parasite. The activity of these drugs against intracellular tachyzoites supports the idea that the drugs selected in the Pandemic Box could be potential future drugs for the treatment of acute toxoplasmosis.
Collapse
Affiliation(s)
- Mike dos Santos
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Andréia Luiza Oliveira Costa
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Guilherme Henrique de Souza Vaz
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Gabriela Carolina Alves de Souza
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Ricardo Wagner de Almeida Vitor
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Érica S. Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| |
Collapse
|
4
|
Midlej V, Pereira-Neves A. Editorial: Perspectives on the ultrastructure and cell biology of parasitic protists. Front Cell Infect Microbiol 2023; 13:1293959. [PMID: 37808909 PMCID: PMC10556728 DOI: 10.3389/fcimb.2023.1293959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Victor Midlej
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Pereira Filho AA, Cunha MM, Alves Stanton M, Fumiko Yamaguchi L, Jorge Kato M, Martins-Duarte ÉS. In Vitro Activity of Essential Oils from Piper Species (Piperaceae) against Tachyzoites of Toxoplasma gondii. Metabolites 2023; 13:metabo13010095. [PMID: 36677020 PMCID: PMC9861968 DOI: 10.3390/metabo13010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Toxoplasmosis is a tropical and neglected disease caused by the parasitic protozoa Toxplasma gondii. Conventional treatment with sulfadiazine and pyrimethamine plus folinic acid, has some drawbacks, such as inefficacy in the chronic phase, toxic side effects, and potential cases of resistance have been observed. In this study, the activity of essential oils (EOs) from three Piper species and their main constituents, including α-Pinene (Piper lindbergii and P. cernuum), β-Pinene (P. cernuum), and dillapiole (P. aduncum), were evaluated against tachyzoites of T. gondii. α-Pinene was more active [(IC50 0.3265 (0.2958 to 0.3604) μg/mL)] against tachyzoites than P. lindbergii EO [0.8387 (0.6492 to 1.084) μg/mL]. Both α-Pinene and P. lindbergii EO exhibited low cytotoxicity against NHDF cells, with CC50 41.37 (37.64 to 45.09) µg/mL and 83.80 (75.42 to 91.34) µg/mL, respectively, suggesting they could be of potential use against toxoplasmosis.
Collapse
Affiliation(s)
- Adalberto Alves Pereira Filho
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| | - Mariana Maciel Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mariana Alves Stanton
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Lydia Fumiko Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| | - Érica S. Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (A.A.P.F.); (M.J.K.); (É.S.M.-D.)
| |
Collapse
|
6
|
Separate To Operate: the Centriole-Free Inner Core of the Centrosome Regulates the Assembly of the Intranuclear Spindle in Toxoplasma gondii. mBio 2022; 13:e0185922. [PMID: 36069445 PMCID: PMC9600614 DOI: 10.1128/mbio.01859-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are the main microtubule-organizing center of the cell. They are normally formed by two centrioles, embedded in a cloud of proteins known as pericentriolar material (PCM). The PCM ascribes centrioles with their microtubule nucleation capacity. Toxoplasma gondii, the causative agent of toxoplasmosis, divides by endodyogeny. Successful cell division is critical for pathogenesis. The centrosome, one of the microtubule organizing centers of the cell, plays central roles in orchestrating the temporal and physical coordination of major organelle segregation and daughter cell formation during endodyogeny. The Toxoplasma centrosome is constituted by multiple domains: an outer core, distal from the nucleus; a middle core; and an inner core, proximal to the nucleus. This modular organization has been proposed to underlie T. gondii's cell division plasticity. However, the role of the inner core remains undeciphered. Here, we focus on understanding the function of the inner core by finely studying the localization and role of its only known molecular marker; TgCep250L1. We show that upon conditional degradation of TgCep250L1 parasites are unable to survive. Mutants exhibit severe nuclear segregation defects. In addition, the rest of the centrosome, defined by the position of the centrioles, disconnects from the nucleus. We explore the structural defects underlying these phenotypes by ultrastructure expansion microscopy. We show that TgCep250L1's location changes with respect to other markers, and these changes encompass the formation of the mitotic spindle. Moreover, we show that in the absence of TgCep250L1, the microtubule binding protein TgEB1, fails to localize at the mitotic spindle, while unsegregated nuclei accumulate at the residual body. Overall, our data support a model in which the inner core of the T. gondii centrosome critically participates in cell division by directly impacting the formation or stability of the mitotic spindle. IMPORTANCE Toxoplasma gondii parasites cause toxoplasmosis, arguably the most widespread and prevalent parasitosis of humans and animals. During the clinically relevant stage of its life cycle, the parasites divide by endodyogeny. In this mode of division, the nucleus, containing loosely packed chromatin and a virtually intact nuclear envelope, parcels into two daughter cells generated within a common mother cell cytoplasm. The centrosome is a microtubule-organizing center critical for orchestrating the multiple simultaneously occurring events of endodyogeny. It is organized in two distinct domains: the outer and inner cores. We demonstrate here that the inner core protein TgCEP250L1 is required for replication of T. gondii. Lack of TgCEP250L1 renders parasites able to form daughter cells, while unable to segregate their nuclei. We determine that, in the absence of TgCEP250L1, the mitotic spindle, which is responsible for karyokinesis, does not assemble. Our results support a role for the inner core in nucleation or stabilization of the mitotic spindle in T. gondii.
Collapse
|