1
|
Feng J, Liu Y, Tian X, Shen C, Feng Z, Zhang J, Yao X, Pu M, Miao X, Ma L, Liu S. Discovery of novel peptide-dehydroepiandrosterone hybrids inducing endoplasmic reticulum stress with effective in vitro and in vivo anti-melanoma activities. Eur J Med Chem 2024; 269:116296. [PMID: 38467086 DOI: 10.1016/j.ejmech.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Steroid hybrids have emerged as a type of advantageous compound as they could offer improved pharmacological and pharmaceutical properties. Here, we report a series of novel peptide-dehydroepiandrosterone hybrids, which would effectively induce endoplasmic reticulum stress (ERS) and lead to apoptosis with outstanding in vitro and in vivo anti-melanoma effects. The lead compound IId among various steroids conjugated with peptides and pyridines showed effective in vivo activity in B16 xenograft mice: in medium- and high-dose treatment groups (60 and 80 mg/kg), compound IId would significantly inhibit the growth of tumours by 98%-99% compared to the control group, with the highest survival rate as well. Further mechanism studies showed that compound IId would damage the endoplasmic reticulum and upregulate the ERS markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), which could further regulate caspase and Bcl-2 family proteins and lead to cell apoptosis. The compound IId was also proven to be effective in inhibiting B16 cell migration and invasion.
Collapse
Affiliation(s)
- Juan Feng
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Yidong Liu
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China.
| | - Xia Tian
- School of Science, Hebei University of Science and Technology, Shijiazhuang, 050022, Hebei, China
| | - Chen Shen
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Zhiqiang Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingxu Zhang
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Xiangli Yao
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Meilin Pu
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Xuguang Miao
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Lan Ma
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China
| | - Shouxin Liu
- State Key Laboratory Breeding Base-Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei Collaborative Innovation Centre of New Drug Creation, College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, 050022, Hebei, China.
| |
Collapse
|
2
|
Long J, Ouyang JC, Luo YH, Wu QJ, Liao XT, Chen ZL, Wang QL, Liang XY, Liu L, Yang XM, Li XS. Three new cardenolides from the fruits of Cascabela thevetia (L.) Lippold and their cytotoxic activities. Nat Prod Res 2024; 38:211-219. [PMID: 35983797 DOI: 10.1080/14786419.2022.2113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Phytochemical investigations on the fruits of Cascabela thevetia (L.) Lippold led to obtain three new cardenolides (1-3) and five known analogues (4-7). Their structures were elucidated by means of UV, IR, HR-ESI-MS, 1D and 2D NMR spectroscopic data analysis. Compounds 1 and 2 represent the first examples of naturally occurring cardenolides with 19-nor-5(10)-ene group and α-l-3-demethyl-thevetose, respectively. Compound 3 is a rare C-nor-D-homocardenolide in nature. All isolated cardenolides (1-7) were evaluated for their cytotoxic activities against four human cancer cell lines (MCF-7, HCT-116, HeLa and HepG2), and the results indicated the compounds with sugar units (1, 2, 4, and 5) exhibited stronger cytotoxic activities with IC50 values ranging between 0.022 and 0.308 μM.
Collapse
Affiliation(s)
- Juan Long
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Jia-Cheng Ouyang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Yu-Hao Luo
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Qi-Jing Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Xiao-Tong Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Zhi-Le Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Qi-Lin Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Xiao-Yan Liang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
- Marine Biomedical Research Institute, The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, P.R. China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Xue-Mei Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
| | - Xiao-San Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, P.R. China
- Marine Biomedical Research Institute, The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, P.R. China
| |
Collapse
|