1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Zou DJ, Liu RZ, Lv YJ, Guo JN, Fan ML, Zhang CJ, Xie YY. Chromone-deferiprone hybrids as novel MAO-B inhibitors and iron chelators for the treatment of Alzheimer's disease. Org Biomol Chem 2024. [PMID: 39027944 DOI: 10.1039/d4ob00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A series of chromone-deferiprone hybrids were designed, synthesized, and evaluated as inhibitors of human monoamine oxidase B (hMAO-B) with iron-chelating activity for the treatment of Alzheimer's disease (AD). The majority exhibited moderate inhibitory activity towards hMAO-B and potent iron-chelating properties. Particularly, compound 25c demonstrated remarkable selectivity against hMAO-B with an IC50 value of 1.58 μM and potent iron-chelating ability (pFe3+ = 18.79) comparable to that of deferiprone (pFe3+ = 17.90). Molecular modeling and kinetic studies showed that 25c functions as a non-competitive hMAO-B inhibitor. According to the predicted results, compound 25c can penetrate the blood-brain barrier (BBB). Additionally, it has been proved to display significant antioxidant activity and the ability to inhibit neuronal ferroptosis. More importantly, compound 25c reduced the cognitive impairment induced by scopolamine and showed significant non-toxicity in short-term toxicity assays. In summary, compound 25c was identified as a potential anti-AD agent with hMAO-B inhibitory, iron-chelating and anti-ferroptosis activities.
Collapse
Affiliation(s)
- Da-Jiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 50025, China
| | - Ren-Zheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yang-Jing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Jia-Nan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Miao-Liang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Chang-Jun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yuan-Yuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Pathak C, Kabra UD. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer's disease. Bioorg Chem 2024; 144:107152. [PMID: 38290187 DOI: 10.1016/j.bioorg.2024.107152] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting specifically older population. AD is an irreversible neurodegenerative CNS disorder associated with complex pathophysiology. Presently, the USFDA has approved only four drugs viz. Donepezil, Rivastigmine, Memantine, and Galantamine for the treatment of AD. These drugs exhibit their neuroprotective effects either by inhibiting cholinesterase enzyme (ChE) or N-methyl-d-aspartate (NMDA) receptor. However, the conventional therapy "one target, one molecule" has failed to provide promising therapeutic effects due to the multifactorial nature of AD. This triggered the development of a novel strategy called Multi-Target Directed Ligand (MTDL) which involved designing one molecule that acts on multiple targets simultaneously. The present review discusses the detailed pathology involved in AD and the various MTDL design strategies bearing different heterocycles, in vitro and in vivo activities of the compounds, and their corresponding structure-activity relationships. This knowledge will allow us to identify and design more effective MTDLs for the treatment of AD.
Collapse
Affiliation(s)
- Chandni Pathak
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Uma D Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
4
|
Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2270781. [PMID: 37955252 PMCID: PMC10653629 DOI: 10.1080/14756366.2023.2270781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disease characterised by progressive memory loss and cognition impairment, ultimately leading to death. There are three FDA-approved acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine, AChEIs) for the symptomatic treatment of AD. Monoamine oxidase B (MAO-B) has been considered to contribute to pathologies of AD. Therefore, we reviewed the dual inhibitors of acetylcholinesterase (AChE) and MAO-B developed in the last five years. In this review, these dual-target inhibitors were classified into six groups according to the basic parent structure, including chalcone, coumarin, chromone, benzo-fused five-membered ring, imine and hydrazine, and other scaffolds. Their design strategies, structure-activity relationships (SARs), and molecular docking studies with AChE and MAO-B were analysed and discussed, giving valuable insights for the subsequent development of AChE and MAO-B dual inhibitors. Challenges in the development of balanced and potent AChE and MAO-B dual inhibitors were noted, and corresponding solutions were provided.
Collapse
Affiliation(s)
- Dajiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Mutahir S, Khan MA, Mushtaq M, Deng H, Naglah AM, Almehizia AA, Al-Omar MA, Alrayes FI, Kalmouch A, El-Mowafi SA, Refat MS. Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules 2023; 28:5911. [PMID: 37570881 PMCID: PMC10421429 DOI: 10.3390/molecules28155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Isoflavenes have received the greatest research attention among the many groups of phytoestrogens. In this study, various isoflavene-based Mannich bases were selected for their theoretical studies. The purpose of this research was to discover the binding potential of all the designated Mannich bases acting as inhibitors against cancerous proteins EGFR, cMet, hTrkA, and HER2 (PDB codes: 5GTY, 3RHK, 6PL2, and 7JXH, respectively). For their virtual screening, DFT calculations and molecular docking studies were undertaken using in silico software. Docking studies predicted that ligands 5 and 15 exhibited the highest docking score by forming hydrogen bonds within the active pocket of protein 6PL2, ligands 1 and 15 both with protein 3RHK, and 7JXH, 12, and 17 with protein 5GTY. Rendering to the trends in polarizability and dipole moment, the energy gap values (0.2175 eV, 0.2106 eV) for the firm conformers of Mannich bases (1 and 4) replicate the increase in bioactivity and chemical reactivity. The energy gap values (0.2214 eV and 0.2172 eV) of benzoxazine-substituted isoflavene-based Mannich bases (9 and 10) reflect the increase in chemical potential due to the most stable conformational arrangements. The energy gap values (0.2188 eV and 0.2181 eV) of isoflavenes with tertiary amine-based Mannich bases (14 and 17) reflect the increase in chemical reactivity and bioactivity due to the most stable conformational arrangements. ADME was also employed to explore the pharmacokinetic properties of targeted moieties. This study revealed that these ligands have a strong potential to be used as drugs for cancer treatment.
Collapse
Affiliation(s)
- Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Maryam Mushtaq
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Haishan Deng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faris Ibrahim Alrayes
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Shaima A. El-Mowafi
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Moamen S. Refat
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
6
|
Zhang K, Liu Y, Jia H, Wang H, Deng M, Liu Y, Zhao X, Xiu X, Li Z, Yang H, Cheng M. Design, synthesis, and evaluation of N-methyl-propargylamine derivates as isoform-selective monoamine oxidases inhibitors for the treatment of nervous system diseases. Bioorg Chem 2023; 134:106441. [PMID: 36854233 DOI: 10.1016/j.bioorg.2023.106441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
A novel series of N-methyl-propargylamine derivates were designed, synthesized, and evaluated as isoform-selective monoamine oxidases (MAO) inhibitors for the treatment of nervous system diseases. The in vitro studies showed some of the compounds exhibited considerable MAO-A selective inhibitory activity (IC50 of 14.86-17.16 nM), while some of the others exhibited great MAO-B selective inhibitory activity (IC50 of 4.37-17.00 nM). Further studies revealed that compounds A2 (IC50 against MAO-A: 17.16 ± 1.17 nM) and A5 (IC50 against MAO-B: 17.00 ± 1.10 nM) had significant abilities to protect PC12 cells from H2O2-induced apoptosis and reactive oxygen species (ROS) production. The parallel artificial membrane permeability assay showed A2 and A5 would be potent to cross the blood-brain barrier. The results indicated that A2 showed potential use in the therapy of MAO-A related diseases, such as depression and anxiety; while A5 exhibited promising ability in the treatment of MAO-B related diseases, such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Kaicheng Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Minghui Deng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Zhenli Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| |
Collapse
|
7
|
Gupta M, Kumar A, Prasun C, Nair MS, Kini SG, Yadav D, Nain S. Design, synthesis, extra-precision docking, and molecular dynamics simulation studies of pyrrolidin-2-one derivatives as potential acetylcholinesterase inhibitors. J Biomol Struct Dyn 2022:1-13. [PMID: 35921217 DOI: 10.1080/07391102.2022.2106515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Inhibition of acetylcholinesterase (AChE) has been widely explored to develop novel molecules for management of Alzheimer's disease. In past research finding reported molecule 3-(4-(4-fluorobenzoyl)piperidin-1-yl)-1-(4-methoxybenzyl)pyrrolidin-2-one displayed a spectrum of anti-Alzheimer's properties herein, we report a library of 18 novel molecules that were rationally designed and synthesized employing known literature to mimic and explore the novel chemical space around the lead compound 6e and donepezil. All the compounds were docked in extra-precision mode with AChE (PDB ID 4EY7) using the Glide module. Molecular dynamics (MD) simulation studies were carried out for 100 ns along with MM-PBSA studies of the trajectory frames generated post-MD simulations. Docking and MD simulation studies suggested that the synthesized compounds showed a good binding affinity with AChE. and might form stable complexes. 3-(4-(benzyl(methyl)amino)piperidin-1-yl)-1-(3,4-dimethoxybenzyl)pyrrolidin-2-one (14a; docking score: -18.59) and 1-(3,4-dimethoxybenzyl)-3-(4-(methyl(thiazol-2-ylmethyl)amino)piperidin-1-yl)pyrrolidin-2-one (14d; docking score: -18.057) showed higher docking score than donepezil (docking score: -17.257) while most of the compounds had docking score >-10.0. ADMET study predicted these compounds to be CNS active and most of the compounds were drug-like molecules with no HERG blockade and good to excellent oral absorption. We developed an atom-based 3 D-QSAR model with R^2 and Q^2 values of 0.9639 and 0.8779 to predict the activity of the synthesized compounds. The model predicted these compounds to be potent AChE inhibitors with IC50 values in the lower micromolar range. Based on the in silico findings, we report these newly synthesized compounds 3-(4-(benzyl(methyl)amino)piperidin-1-yl)-1-(3,4-dimethoxybenzyl)pyrrolidin-2-one (14a) and 7-(2,6-difluorobenzyl)-2-(4-methoxybenzyl)-2,7-diazaspiro[4.5]decan-1-one (20 b) as potential AChE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohan Gupta
- Department of Pharmacy ,Banasthali Vidyapith, Newai, Rajasthan, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chakrawarti Prasun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Yadav
- Department of Pharmacy ,Banasthali Vidyapith, Newai, Rajasthan, India
| | - Sumitra Nain
- Department of Pharmacy ,Banasthali Vidyapith, Newai, Rajasthan, India
| |
Collapse
|