1
|
Bai L, Xiang Y, Shen M, Han Y, Li P, Zuo Z, Li Y. Design, synthesis and activity evaluation of novel quinazolinone compounds as TRPC5 inhibitors. Bioorg Chem 2025; 155:108147. [PMID: 39817997 DOI: 10.1016/j.bioorg.2025.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
The TRPC5 channel plays an important role in regulating various physiological processes, which is related to various human diseases, especially psychiatric and kidney diseases. Although the TRPC5 channel is one of the essential potential target, no drugs against TRPC5 channels have been granted in the market to date. In this study, based on the structure of hit compound ph1, we further synthesied 49 compounds of novel quinazolinone and heterocyclic fusion pyrimidinone derivatives, and their activities were evaluated by electrophysiological assays. After extensive screening, 21 compounds exhibited significant TRPC5 inhibitory activity, and compounds ph8 and ph14 displayed strong inhibitory with IC50 of 1.28 and 2.16 μM, respectively. These identified potential TRPC5 inhibitor may provide lead compounds and experimental evidence for the development of novel TRPC5 inhibitors with potential treatment for anxiety, depression, and progressive kidney disease.
Collapse
Affiliation(s)
- Longhui Bai
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Meiling Shen
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Yujun Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Penghua Li
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China
| | - Zhili Zuo
- School of Pharmacology Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of the Chinese Academy of Sciences, Beijing 100049 China.
| | - Yang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of the Chinese Academy of Sciences, Beijing 100049 China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China.
| |
Collapse
|
2
|
Khare P, Chand J, Ptakova A, Liguori R, Ferrazzi F, Bishnoi M, Vlachova V, Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol Ther 2024; 263:108727. [PMID: 39384022 DOI: 10.1016/j.pharmthera.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The transient receptor potential canonical (TRPC) channels are a group of highly homologous nonselective cation channels from the larger TRP channel family. They have the ability to form homo- and heteromers with varying degrees of calcium (Ca2+) permeability and signalling properties. TRPC5 is the one cold-sensitive among them and likewise facilitates the influx of extracellular Ca2+ into cells to modulate neuronal depolarization and integrate various intracellular signalling pathways. Recent research with cryo-electron microscopy revealed its structure, along with clear insight into downstream signalling and protein-protein interaction sites. Investigations using global and conditional deficient mice revealed the involvement of TRPC5 in metabolic diseases, energy balance, thermosensation and conditions such as osteoarthritis, rheumatoid arthritis, and inflammatory pain including opioid-induced hyperalgesia and hyperalgesia following tooth decay and pulpitis. This review provides an update on recent advances in our understanding of the role of TRPC5 with focus on metabolic diseases and pain.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jagdish Chand
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Renato Liguori
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector (Knowledge City), Punjab, India
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katharina Zimmermann
- Department of Anesthesiology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Xu Y, Ren Y, Zhang J, Niu B, Liu M, Xu T, Zhang X, Shen J, Wang K, Cao Z. Discovery of pyridazinone derivatives bearing tetrahydroimidazo[1,2-a]pyrazine scaffold as potent inhibitors of transient receptor potential canonical 5 to ameliorate hypertension-induced renal injury in rats. Eur J Med Chem 2024; 275:116565. [PMID: 38878518 DOI: 10.1016/j.ejmech.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
Transient receptor potential canonical 5 (TRPC5) is a calcium-permeable non-selective cation channel involved in various pathophysiological processes, including renal injury. Recently, GFB-887, an investigational pyridazinone TRPC5 inhibitor, demonstrated significant therapeutic potential in a Phase II clinical trial for focal segmental glomerulosclerosis (FSGS), a rare and severe form of chronic kidney disease (CKD). In the current study, based on the structure of GFB-887, we conducted extensive structural modification to explore novel TRPC5 inhibitors with desirable drug-like properties and robust nephroprotective efficacy. A series of pyridazinone derivatives featuring a novel tetrahydroimidazo[1,2-a]pyrazine scaffold were synthesized and their activities were evaluated in HEK-293 cells stably expressing TRPC5 using a fluorescence-based Ca2+ mobilization assay. Among these compounds, compound 12 is turned out to be a potent TRPC5 inhibitor with apparent affinity comparable to the parent compound GBF-887. Compound 12 is highly selective on TRPC4/5 over TRPC3/6/7 and hERG channels, along with acceptable pharmacokinetic properties and a favorable safety profile. More importantly, in a rat model of hypertension-induced renal injury, oral administration of compound 12 (10 mg/kg, BID) efficaciously reduced mean blood pressure, inhibited proteinuria, and protected podocyte damage. These findings further confirmed the potential of TRPC5 inhibitors on the CKD treatment and provided compound 12 to be a valuable tool for exploring TRPC4/5 pathophysiology.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jianhua Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Wang S, Li X, Hu Y, Wang L, Lv G, Feng Y, Sun Z, Cao Z, Liu Y, Wang H. Discovery of N-alkyl-N-benzyl thiazoles as novel TRPC antagonists for the treatment of glioblastoma multiforme. Eur J Med Chem 2024; 265:116066. [PMID: 38185057 DOI: 10.1016/j.ejmech.2023.116066] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Glioblastoma multiforme represents a substantial clinical challenge. Transient receptor potential channel (TRPC) antagonists might provide new therapeutic options for this aggressive cancer. In this study, a series of N-alkyl-N-benzoyl and N-alkyl-N-benzyl thiazoles were designed and prepared using a scaffold-hopping strategy and evaluated as TRPC6 antagonists. This resulted in the discovery of 15g, a potent TRPC antagonist that exhibited suitable inhibitory micromolar activities against TRPC3, TRPC4, TRPC5, TPRC6, and TRPC7 and displayed noteworthy anti-glioblastoma efficacy in vitro against U87 cell lines. In addition, 15g featured an acceptable pharmacokinetic profile and exhibited better in vivo potency (25 mg/kg/d) than the frontline therapeutic agent temozolomide (50 mg/kg/d) in xenograft models. Taken together, the TRPC antagonist 15g represents a promising lead compound for developing new anti-glioblastoma agents.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xiaoxue Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yuemiao Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Lin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yuxin Feng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ziqiang Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|