1
|
Triantopoulou S, Roupa I, Shegani A, Pirmettis NN, Terzoudi GI, Chiotellis A, Tolia M, Damilakis J, Pirmettis I, Paravatou-Petsota M. Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting. Pharmaceutics 2024; 16:1213. [PMID: 39339249 PMCID: PMC11434983 DOI: 10.3390/pharmaceutics16091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Epidermal growth factor receptor (EGFR) plays a vital role in cell proliferation and survival, with its overexpression linked to various malignancies, including non-small cell lung cancer (NSCLC). Although EGFR tyrosine kinase inhibitors (TKIs) are a key therapeutic strategy, acquired resistance and relapse remain challenges. This study aimed to synthesize and evaluate novel rhenium-based complexes incorporating EGFR TKIs to enhance anticancer efficacy, particularly in radiosensitization. Methods: We synthesized a rhenium tricarbonyl complex (Complex 2) and its 99mTc analog (Complex 2') by incorporating triphenylphosphine instead of bromine as the monodentate ligand and PF6- as the counter-ion, resulting in a positively charged compound that forms cationic structures. Cytotoxicity and EGFR inhibition were evaluated in A431 cells overexpressing EGFR using MTT assays, Western blotting, and flow cytometry. Radiosensitization was tested through MTT and clonogenic assays. The 99mTc complex's radiochemical yield, stability, and lipophilicity were also assessed. Results: Complex 2 exhibited significant cytotoxicity with an IC50 of 2.6 μM and EGFR phosphorylation inhibition with an IC50 of 130.6 nM. Both complex 1 and 2 induced G0/G1 cell cycle arrest, with Complex 2 causing apoptosis. Radiosensitization was observed at doses above 2 Gy. Complex 2' demonstrated high stability and favorable lipophilicity (LogD7.4 3.2), showing 12% cellular uptake after 30 min. Conclusions: Complexes 2 and 2' show promise as dual-function anticancer agents, offering EGFR inhibition, apoptosis induction, and radiosensitization. Their potential as radiopharmaceuticals warrants further in-depth investigation in preclinical models.
Collapse
Affiliation(s)
- Sotiria Triantopoulou
- Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece; (S.T.); (J.D.)
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Ioanna Roupa
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Antonio Shegani
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Nektarios N. Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Georgia I. Terzoudi
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Aristeidis Chiotellis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Iraklion, 71110 Iraklion, Greece;
| | - John Damilakis
- Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece; (S.T.); (J.D.)
| | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Maria Paravatou-Petsota
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| |
Collapse
|
2
|
Jiang Y, Han P, Yin G, Wang Q, Feng J, Ruan Q, Xiao D, Zhang J. Radiosynthesis and Bioevaluation of 99mTc-Labeled Isocyanide Ubiquicidin 29-41 Derivatives as Potential Agents for Bacterial Infection Imaging. Int J Mol Sci 2024; 25:1045. [PMID: 38256119 PMCID: PMC10816394 DOI: 10.3390/ijms25021045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
To develop a novel 99mTc-labeled ubiquicidin 29-41 derivative for bacterial infection single-photon emission computed tomography (SPECT) imaging with improved target-to-nontarget ratio and lower nontarget organ uptake, a series of isocyanide ubiquicidin 29-41 derivatives (CNnUBI 29-41, n = 5-9) with different carbon linkers were designed, synthesized and radiolabeled with the [99mTc]Tc(I)+ core, [99mTc][Tc(I)(CO)3(H2O)3]+ core and [99mTc][Tc(V)N]2+ core. All the complexes are hydrophilic, maintain good stability and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection and sterile inflammation demonstrated that [99mTc]Tc-CN5UBI 29-41 was able to distinguish bacterial infection from sterile inflammation, which had an improved abscess uptake and a greater target-to-nontarget ratio. SPECT imaging study of [99mTc]Tc-CN5UBI 29-41 in bacterial infection mice showed that there was a clear accumulation in the infection site, suggesting that this radiotracer could be a potential radiotracer for bacterial infection imaging.
Collapse
Affiliation(s)
- Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Di Xiao
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| |
Collapse
|
3
|
Battistin F, Fernandes C, Raposinho PD, Blacque O, Paulo A, Alberto R. In vivo and in vitro studies of [M(η 6-pseudoerlotinib) 2] + sandwich complexes (M = Re, 99mTc). Dalton Trans 2023; 52:15757-15766. [PMID: 37846621 DOI: 10.1039/d3dt03011c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The pursuit of molecular imaging for tumors has led to endeavors focused on targeting epidermal growth factor receptors (EGFR) through monoclonal antibodies or radionuclide-labelled EGF analogs with 99mTc, 111In, or 131I. In this context, various 99mTc-labeled EGFR inhibitors using quinazoline structures have been reported based on the so-called pendant approach and on two types of complexes and labelling strategies: "4 + 1" mixed ligand complexes and fac-tricarbonyl complexes. Apart from this approach, which alters lead structures by linking pharmacophores to chelator frameworks through different connectors, the integrated incorporation of topoisomerase and tyrosine kinase inhibitors into Re and 99mTc complexes has not been explored. Here we present [M(η6-inhibitor)2]+ (M = Re, 99mTc) and [Re(η6-bz)(η6-inhibitor)]+ complexes, where the core structure of an EGFR tyrosine kinase inhibitor binds directly to the metal center. These complexes exhibit potential for tumor imaging: initial biological investigations highlight the influence of one versus two bound inhibitors on the metal center.
Collapse
Affiliation(s)
- Federica Battistin
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Bobadela, Portugal.
| | - Paula D Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Bobadela, Portugal.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Bobadela, Portugal.
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
4
|
Kiss OC, Scott PJH, Behe M, Penuelas I, Passchier J, Rey A, Patt M, Aime S, Jalilian A, Laverman P, Cheng Z, Chauvet AF, Engle J, Cleeren F, Zhu H, Vercouillie J, van Dam M, Zhang MR, Perk L, Guillet B, Alves F. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2023; 8:6. [PMID: 36952073 PMCID: PMC10036721 DOI: 10.1186/s41181-023-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field, and include new PET-labelling methods for 11C and 18F, the importance of choosing the proper chelator for a given radioactive metal ion, implications of total body PET on use of radiopharmaceuticals, legislation issues and radionuclide therapy including the emerging role of 161Tb.
Collapse
Affiliation(s)
- Oliver C Kiss
- Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany.
| | | | - Martin Behe
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Ana Rey
- Universidad de la Rebublica, Montevideo, Uruguay
| | | | | | | | - Peter Laverman
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhen Cheng
- Shanghai Institute of Materia Medica, Shanghai, China
| | | | | | | | - Hua Zhu
- Peking University Cancer Hospital, Beijing, China
| | | | | | | | - Lars Perk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
5
|
Evaluation of Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivatives as Potential EGFR Agents. Molecules 2023; 28:molecules28041786. [PMID: 36838773 PMCID: PMC9960821 DOI: 10.3390/molecules28041786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Τhe Epidermal Growth Factor Receptor tyrosine kinase inhibitor (EGFR-TKI) 6-amino-4-[(3-bromophenyl) amino]quinazoline was derivatized with 6-bromohexanoyl-chloride and coupled with the tridentate chelating agents N-(2-pyridylmethyl) aminoethyl acetic acid (PAMA) and L(+)-cysteine bearing the donor atom set NNO and SNO, respectively. The rhenium precursors ReBr(CO)5 and fac-[NEt4]2[ReBr3(CO)3] were used for the preparation of the Re complexes fac-[Re(NNO)(CO)3] (5a) and fac-[Re(SNO)(CO)3] (7a) which were characterized by NMR and IR spectroscopies. Subsequently, the new potential EGFR inhibitors were labeled with the fac-[99mTc(CO)3]+ core in high yield and radiochemical purity (>90%) by ligand exchange reaction using the fac-[99mTc][Tc(OH2)3(CO)3]+ precursor. The radiolabeled complexes were characterized by comparative HPLC analysis with the analogous rhenium (Re) complexes as references. In vitro studies in the A431 cell lines showed that both ligands and Re complexes inhibit A431 cell growth. Complex 5a demonstrated the highest potency (IC50 = 8.85 ± 2.62 μM) and was further assessed for its capacity to inhibit EGFR autophosphorylation, presenting an IC50 value of 26.11 nM. Biodistribution studies of the 99mTc complexes in healthy mice showed high in vivo stability for both complexes and fast blood and soft tissue clearance with excretion occurring via the hepatobiliary system.
Collapse
|