1
|
A Abdelhakim I, Futamura Y, Asami Y, Hanaki H, Kito N, Masuda S, Shibata A, Muranaka A, Koshino H, Shirasu K, Osada H, Ishikawa J, Takahashi S. Expression of Syo_1.56 SARP Regulator Unveils Potent Elasnin Derivatives with Antibacterial Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:1459-1470. [PMID: 38652684 DOI: 10.1021/acs.jnatprod.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Actinomycetes are prolific producers of natural products, particularly antibiotics. However, a significant proportion of its biosynthetic gene clusters (BGCs) remain silent under typical laboratory conditions. This limits the effectiveness of conventional isolation methods for the discovery of novel natural products. Genetic interventions targeting the activation of silent gene clusters are necessary to address this challenge. Streptomyces antibiotic regulatory proteins (SARPs) act as cluster-specific activators and can be used to target silent BGCs for the discovery of new antibiotics. In this study, the expression of a previously uncharacterized SARP protein, Syo_1.56, in Streptomyces sp. RK18-A0406 significantly enhanced the production of known antimycins and led to the discovery of 12 elasnins (1-12), 10 of which were novel. The absolute stereochemistry of elasnin A1 was assigned for the first time to be 6S. Unexpectedly, Syo_1.56 seems to function as a pleiotropic rather than cluster-specific SARP regulator, with the capability of co-regulating two distinct biosynthetic pathways, simultaneously. All isolated elasnins were active against wild-type and methicillin-resistant Staphylococcus aureus with IC50 values of 0.5-20 μg/mL, some of which (elasnins A1, B2, and C1 and proelasnins A1, and C1) demonstrated moderate to strong antimalarial activities against Plasmodium falciparum 3D7. Elasnins A1, B3, and C1 also showed in vitro inhibition of the metallo-β-lactamase responsible for the development of highly antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Islam A Abdelhakim
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Yushi Futamura
- Chemical Resource Development Research Unit and Drug Discovery Chemical Bank Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Yukihiro Asami
- O̅mura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- O̅mura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Naoko Kito
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit and Drug Discovery Chemical Bank Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Jun Ishikawa
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Wachino JI, Jin W, Norizuki C, Kimura K, Tsuji M, Kurosaki H, Arakawa Y. Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in Enterobacterales. Microbiol Spectr 2024; 12:e0234423. [PMID: 38315122 PMCID: PMC10913484 DOI: 10.1128/spectrum.02344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Metallo-β-lactamases (MBLs) represent one of the main causes of carbapenem resistance in the order Enterobacterales. To combat MBL-producing carbapenem-resistant Enterobacterales, the development of MBL inhibitors can restore carbapenem efficacy for such resistant bacteria. Microbial natural products are a promising source of attractive seed compounds for the development of antimicrobial agents. Here, we report that hydroxyhexylitaconic acids (HHIAs) produced by a member of the genus Aspergillus can suppress carbapenem resistance conferred by MBLs, particularly IMP (imipenemase)-type MBLs. HHIAs were found to be competitive inhibitors with micromolar orders of magnitude against IMP-1 and showed weak inhibitory activity toward VIM-2, while no inhibitory activity against NDM-1 was observed despite the high dosage. The elongated methylene chains of HHIAs seem to play a crucial role in exerting inhibitory activity because itaconic acid, a structural analog without long methylene chains, did not show inhibitory activity against IMP-1. The addition of HHIAs restored meropenem and imipenem efficacy to satisfactory clinical levels against IMP-type MBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. Unlike EDTA and Aspergillomarasmine A, HHIAs did not cause the loss of zinc ions from the active site, resulting in the structural instability of MBLs. X-ray crystallography and in silico docking simulation analyses revealed that two neighboring carboxylates of HHIAs coordinated with two zinc ions in the active sites of VIM-2 and IMP-1, which formed a key interaction observed in MBL inhibitors. Our results indicated that HHIAs are promising for initiating the design of potent inhibitors of IMP-type MBLs.IMPORTANCEThe number and type of metallo-β-lactamase (MΒL) are increasing over time. Carbapenem resistance conferred by MΒL is a significant threat to our antibiotic regimen, and the development of MΒL inhibitors is urgently required to restore carbapenem efficacy. Microbial natural products have served as important sources for developing antimicrobial agents targeting pathogenic bacteria since the discovery of antibiotics in the mid-20th century. MΒL inhibitors derived from microbial natural products are still rare compared to those derived from chemical compound libraries. Hydroxyhexylitaconic acids (HHIAs) produced by members of the genus Aspergillus have potent inhibitory activity against clinically relevant IMP-type MBL. HHIAs may be good lead compounds for the development of MBL inhibitors applicable for controlling carbapenem resistance in IMP-type MBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Jun-ichi Wachino
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Aichi, Japan
| | - Chihiro Norizuki
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Yoshichika Arakawa
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Tahara A, Tani K, Wakatsuki M, Tokiwa T, Higo M, Nonaka K, Hirose T, Hokari R, Ishiyama A, Iwatsuki M, Watanabe Y, Honsho M, Asami Y, Matsui H, Sunazuka T, Hanaki H, Teruya T, Ishii T. A novel aromatic compound from the fungus Synnemellisia sp. FKR-0921. J Antibiot (Tokyo) 2023; 76:706-710. [PMID: 37758818 DOI: 10.1038/s41429-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The filamentous fungus Synnemellisia sp. strain FKR-0921 was obtained from soil collected on Kume Island, Okinawa. The MeOH extract of FKR-0921 cultured on a solid rice medium yielded a new aromatic compound, synnemellisitriol A (1). The structure, including the absolute configuration, was elucidated by spectroscopic analysis (FT-IR, NMR, and HR-ESI-MS), and the absolute configuration at C-9 of 1 was determined using the modified Mosher's method. Additionally, 1 was evaluated for its biological activities, including metallo-β-lactamase inhibitory activity, type III secretion system inhibitory activity, antimicrobial activity, antimalarial activity, and cytotoxicity.
Collapse
Affiliation(s)
- Arisu Tahara
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Kazuki Tani
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Miyu Wakatsuki
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Toshiyuki Tokiwa
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mayuka Higo
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenichi Nonaka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rei Hokari
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Aki Ishiyama
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Takahiro Ishii
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
4
|
Yan YH, Zhang TT, Li R, Wang SY, Wei LL, Wang XY, Zhu KR, Li SR, Liang GQ, Yang ZB, Yang LL, Qin S, Li GB. Discovery of 2-Aminothiazole-4-carboxylic Acids as Broad-Spectrum Metallo-β-lactamase Inhibitors by Mimicking Carbapenem Hydrolysate Binding. J Med Chem 2023; 66:13746-13767. [PMID: 37791640 DOI: 10.1021/acs.jmedchem.3c01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic β-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates. We here report the development of 2-aminothiazole-4-carboxylic acids (AtCs) as broad-spectrum MBL inhibitors by mimicking the anchor pharmacophore features of carbapenem hydrolysate binding. Several AtCs manifested potent activity against B1, B2, and B3 MBLs. Crystallographic analyses revealed a common binding mode of AtCs with B1, B2, and B3 MBLs, resembling binding observed in the MBL-carbapenem product complexes. AtCs restored Meropenem activity against MBL-producing isolates. In the murine sepsis model, AtCs exhibited favorable synergistic efficacy with Meropenem, along with acceptable pharmacokinetics and safety profiles. This work offers promising lead compounds and a structural basis for the development of potential drug candidates to combat MBL-mediated antimicrobial resistance.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting-Ting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Si-Yao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liu-Liu Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shan-Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Qing Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zeng-Bao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|