1
|
Lyakhovich MS, Murashkina AV, Panchenko SP, Averin AD, Abel AS, Maloshitskaya OA, Savelyev EN, Orlinson BS, Novakov IA, Beletskaya IP. Arylation of Adamantanamines: XI. Comparison of the Catalytic Efficiency of Palladium and Copper Complexes in Reactions of Adamantanamines with Fluorinated 2-Bromopyridines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021050031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Mono- and Diamination of 4,6-Dichloropyrimidine, 2,6-Dichloropyrazine and 1,3-Dichloroisoquinoline with Adamantane-Containing Amines. Molecules 2021; 26:molecules26071910. [PMID: 33805408 PMCID: PMC8037717 DOI: 10.3390/molecules26071910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
N-heteroaryl substituted adamantane-containing amines are of substantial interest for their perspective antiviral and psychotherapeutic activities. Chlorine atom at alpha-position of N-heterocycles has been substituted by the amino group using convenient nucleophilic substitution reactions with a series of adamantylalkylamines. The prototropic equilibrium in these compounds was studied using NMR spectroscopy. The introduction of the second amino substituent in 4-amino-6-chloropyrimidine, 2-amino-chloropyrazine, and 1-amino-3-chloroisoquinoline was achieved using Pd(0) catalysis.
Collapse
|
3
|
Turk-Erbul B, Karaman EF, Duran GN, Ozbil M, Ozden S, Goktas F. Synthesis, in vitro cytotoxic and apoptotic effects, and molecular docking study of novel adamantane derivatives. Arch Pharm (Weinheim) 2021; 354:e2000256. [PMID: 33410150 DOI: 10.1002/ardp.202000256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 12/09/2022]
Abstract
[4-(Adamantane-1-carboxamido)-3-oxo-1-thia-4-azaspiro[4.4]nonan-2-yl]acetic acid (4a) and [4-(adamantane-1-carboxamido)-8-nonsubstituted/substituted-3-oxo-1-thia-4-azas-piro[4.5]decane-2-yl]acetic acid (4b-g) derivatives were synthesized; their structures were verified by elemental analysis, infrared spectroscopy, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectroscopy data; and their in vitro cytotoxicity activities were investigated against human hepatocellular carcinoma, human prostate adenocarcinoma, and human lung carcinoma cell lines (HepG2, PC-3, and A549, respectively), and a mouse fibroblast cell line (NIH/3T3). All compounds, except compound 4e, were found as cytotoxic, especially on A549 cells as compared with the other cells (selectivity index = 2.01-11.6). As a further step, the effects of compounds 4a-c on apoptosis induction were tested and the expression of selected apoptosis genes was analyzed. Among the selected compounds, compound 4a induced apoptosis remarkably. Moreover, computational calculations of the binding of compounds 4a-c to the BIR3 domain of the human inhibitor of apoptosis protein revealed ligand-protein interactions at the atomistic level and emphasized the importance of a hydrophobic moiety on the ligands for better binding.
Collapse
Affiliation(s)
- Basak Turk-Erbul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ecem F Karaman
- Department of Pharmaceutical Toxicology, Biruni University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Gizem N Duran
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Fusun Goktas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Tripolitsiotis NP, Thomaidi M, Neochoritis CG. The Ugi Three‐Component Reaction; a Valuable Tool in Modern Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Maria Thomaidi
- Chemistry Department School of Science and Engineering University of Crete 70013 Heraklion Greece
| | | |
Collapse
|
5
|
Baum E, Zhang W, Li S, Cai Z, Holden D, Huang Y. A Novel 18F-Labeled Radioligand for Positron Emission Tomography Imaging of 11β-Hydroxysteroid Dehydrogenase (11β-HSD1): Synthesis and Preliminary Evaluation in Nonhuman Primates. ACS Chem Neurosci 2019; 10:2450-2458. [PMID: 30689943 DOI: 10.1021/acschemneuro.8b00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of cortisone to cortisol and controls a key pathway in the regulation of stress. Studies have implicated 11β-HSD1 in metabolic diseases including type 2 diabetes and obesity, as well as stress-related disorders and neurodegenerative diseases, such as depression and Alzheimer's disease (AD). We have previously developed [11C]AS2471907 as a PET radiotracer to image 11β-HSD1 in the brain of nonhuman primates and humans. However, the radiosynthesis of [11C]AS2471907 was unreliable and low-yielding. Here, we report the development of the 18F-labeled version [18F]AS2471907, including the synthesis of two iodonium ylide precursors and the optimization of 18F-radiosynthesis. Preliminary PET experiments, composed of a baseline scan of [18F]AS2471907 and a blocking scan with the reversible 11β-HSD1 inhibitor ASP3662 (0.3 mg/kg), was also conducted in a rhesus monkey to verify the pharmacokinetics of [18F]AS2471907 and its specific binding in the brain. The iodonium ylide precursors were prepared in a seven-step synthetic route with an optimized overall yield of ∼2%. [18F]AS2471907 was synthesized in good radiochemical purity, with the ortho regioisomer of iodonium ylide providing greater radiochemical yield as compared with the para regioisomer. In monkey brain, [18F]AS2471907 displayed high uptake and heterogeneous distribution, while administration of the 11β-HSD1 inhibitor ASP3662 significantly reduced radiotracer uptake, thus demonstrating the binding specificity of [18F]AS2471907. Given the longer half-life of F-18 and feasibility for central production and distribution, [18F]AS2471907 holds great promise to be a valuable PET radiotracer to image 11β-HSD1 in the brain.
Collapse
Affiliation(s)
- Evan Baum
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, Connecticut 06520-8048, United States
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, Connecticut 06520-8048, United States
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, Connecticut 06520-8048, United States
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, Connecticut 06520-8048, United States
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, New Haven, Connecticut 06520-8048, United States
| |
Collapse
|
6
|
Boudon S, Heidl M, Vuorinen A, Wandeler E, Campiche R, Odermatt A, Jackson E. Design, synthesis, and biological evaluation of novel selective peptide inhibitors of 11β-hydroxysteroid dehydrogenase 1. Bioorg Med Chem 2018; 26:5128-5139. [PMID: 30245006 DOI: 10.1016/j.bmc.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022]
Abstract
The enzyme 11β-HSD1 plays a crucial role in the tissue-specific regulation of cortisol levels and it has been associated with various diseases. Inhibition of 11β-HSD1 is an attractive intervention strategy and the discovery of novel selective 11β-HSD1 inhibitors is of high relevance. In this study, we identified and evaluated a new series of selective peptide 11β-HSD1 inhibitors with potential for skin care applications. This novel scaffold was designed with the aid of molecular modeling and two previously reported inhibitors. SAR optimization yielded highly active peptides (IC50 below 400 nM) that were inactive at 1 µM concentration against structurally related enzymes (11β-HSD2, 17β-HSD1 and 17β-HSD2). The best performing peptides inhibited the conversion of cortisone into cortisol in primary human keratinocytes and the most active compound, 5d, was further shown to reverse cortisone-induced collagen damage in human ex-vivo tissue.
Collapse
Affiliation(s)
- Stephanie Boudon
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Marc Heidl
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Anna Vuorinen
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Eliane Wandeler
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Remo Campiche
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Eileen Jackson
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland.
| |
Collapse
|
7
|
Leiva R, Griñan-Ferré C, Seira C, Valverde E, McBride A, Binnie M, Pérez B, Luque FJ, Pallàs M, Bidon-Chanal A, Webster SP, Vázquez S. Design, synthesis and in vivo study of novel pyrrolidine-based 11β-HSD1 inhibitors for age-related cognitive dysfunction. Eur J Med Chem 2017; 139:412-428. [PMID: 28818766 DOI: 10.1016/j.ejmech.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Recent findings suggest that treatment with 11β-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11β-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action. This is the first time that 11β-HSD1 inhibitors have been studied in this broadly-used mouse model of accelerated senescence and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Christian Griñan-Ferré
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Andrew McBride
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Belén Pérez
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom.
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
8
|
Buckingham F, Gouverneur V. Asymmetric 18F-fluorination for applications in positron emission tomography. Chem Sci 2016; 7:1645-1652. [PMID: 28808536 PMCID: PMC5535067 DOI: 10.1039/c5sc04229a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/12/2015] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) is becoming more frequently used by medicinal chemists to facilitate the selection of the most promising lead compounds for further evaluation. For PET, this entails the preparation of 11C- or 18F-labeled drugs or radioligands. With the importance of chirality and fluorine substitution in drug development, chemists can be faced with the challenge of preparing enantiopure molecules featuring the 18F-tag on a stereogenic carbon. Asymmetric 18F-fluorination is an emerging field of research that provides an alternative to resolution or conventional SN2-based radiochemistry. To date, both transition metal complexes and organomediators have been successfully employed for 18F-incorporation at a stereogenic carbon.
Collapse
Affiliation(s)
- Faye Buckingham
- University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , OX1 3UQ , Oxford , UK .
| | - Véronique Gouverneur
- University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , OX1 3UQ , Oxford , UK .
| |
Collapse
|
9
|
Methods to Increase the Metabolic Stability of (18)F-Radiotracers. Molecules 2015; 20:16186-220. [PMID: 26404227 PMCID: PMC6332123 DOI: 10.3390/molecules200916186] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of 18F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [18F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.
Collapse
|
10
|
Leiva R, Seira C, McBride A, Binnie M, Luque FJ, Bidon-Chanal A, Webster SP, Vázquez S. Novel 11β-HSD1 inhibitors: C-1 versus C-2 substitution and effect of the introduction of an oxygen atom in the adamantane scaffold. Bioorg Med Chem Lett 2015; 25:4250-3. [PMID: 26306982 DOI: 10.1016/j.bmcl.2015.07.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
The adamantane scaffold is found in several marketed drugs and in many investigational 11β-HSD1 inhibitors. Interestingly, all the clinically approved adamantane derivatives are C-1 substituted. We demonstrate that, in a series of paired adamantane isomers, substitution of the adamantane in C-2 is preferred over the substitution at C-1 and is necessary for potency at human 11β-HSD1. Furthermore, the introduction of an oxygen atom in the hydrocarbon scaffold of adamantane is deleterious to 11β-HSD1 inhibition. Molecular modeling studies provide a basis to rationalize these features.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain
| | - Constantí Seira
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Andrew McBride
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Scott P Webster
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain.
| |
Collapse
|
11
|
Scott JS, Goldberg FW, Turnbull AV. Medicinal Chemistry of Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). J Med Chem 2013; 57:4466-86. [DOI: 10.1021/jm4014746] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James S. Scott
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Frederick W. Goldberg
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Andrew V. Turnbull
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| |
Collapse
|
12
|
Wang W, Cao H, Wolf S, Camacho-Horvitz MS, Holak TA, Dömling A. Benzimidazole-2-one: a novel anchoring principle for antagonizing p53-Mdm2. Bioorg Med Chem 2013; 21:3982-95. [PMID: 22789708 PMCID: PMC3716288 DOI: 10.1016/j.bmc.2012.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022]
Abstract
Herein we propose the benzimidazole-2-one substructure as a suitable tryptophan mimic and thus a reasonable starting point for the design of p53 Mdm2 antagonists. We devise a short multicomponent reaction route to hitherto unknown 2-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)acetamides by reacting mono N-carbamate protected phenylenediamine in a Ugi-3CR followed by base induced cyclisation. Our preliminary synthesis and screening results are presented here. The finding of the benzimidazolone moiety as a tryptophan replacement in mdm2 is significant as it offers access to novel scaffolds with potentially higher selectivity and potency and improved biological activities. Observing low μM affinities to mdm2 by NMR and fluorescence polarization we conclude that the 2-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)acetamide scaffold might be a good starting point to further optimize the affinities to Mdm2.
Collapse
Affiliation(s)
- Wei Wang
- University of Pittsburgh, 3501 Fifth Avenue, BST3 11019, Pittsburgh, PA 1526, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
14
|
Franck D, Kniess T, Steinbach J, Zitzmann-Kolbe S, Friebe M, Dinkelborg LM, Graham K. Investigations into the synthesis, radiofluorination and conjugation of a new [¹⁸F]fluorocyclobutyl prosthetic group and its in vitro stability using a tyrosine model system. Bioorg Med Chem 2012; 21:643-52. [PMID: 23290251 DOI: 10.1016/j.bmc.2012.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022]
Abstract
The [(18)F]fluorocyclobutyl group has the potential to be a metabolically stable prosthetic group for PET tracers. The synthesis of the radiolabeling precursor cis-cyclobutane-1,3-diyl bis(toluene-4-sulfonate) 8 was obtained from epibromohydrin in 7 steps (2% overall yield). The radiolabeling of this precursor 8 and its conjugation to L-tyrosine as a model system was successfully achieved to give the new non-natural amino acid 3-[(18)F]fluorocyclobutyl-L-tyrosine (L-3-[(18)F]FCBT) [(18)F]17 in 8% decay-corrected yield from the non-carrier-added [(18)F]fluoride. L-3-[(18)F]FCBT was investigated in vitro in different cancer cell lines to determine the uptake and stability. The tracer [(18)F]17 showed a time dependent uptake into different tumor cell lines (A549, NCI-H460, DU145) with the best uptake of 5.8% injected dose per 5×10(5) cells after 30min in human lung carcinoma cells A549. The stability of L-3-[(18)F]FCBT in human and rat plasma and the stability of the non-radioactive L-3-FCBT in rat hepatocytes were both found to be excellent. These results show that the non-natural amino acid L-3-[(18)F]FCBT is a promising metabolically stable radiotracer for positron emission tomography.
Collapse
Affiliation(s)
- Dominic Franck
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Fukuyama T, Mukai Y, Ryu I. Koch-Haaf reaction of adamantanols in an acid-tolerant hastelloy-made microreactor. Beilstein J Org Chem 2011; 7:1288-93. [PMID: 21977213 PMCID: PMC3182438 DOI: 10.3762/bjoc.7.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/23/2023] Open
Abstract
The Koch–Haaf reaction of adamantanols was successfully carried out in a microflow system at room temperature. By combining an acid-tolerant hastelloy-made micromixer, a PTFE tube, and a hastelloy-made microextraction unit, a packaged reaction-to-workup system was developed. By means of the present system, the multigram scale synthesis of 1-adamantanecarboxylic acid was achieved in ca. one hour operation.
Collapse
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
16
|
Discovery of N-(1-adamantyl)-2-(4-alkylpiperazin-1-yl)acetamide derivatives as T-type calcium channel (Cav3.2) inhibitors. Bioorg Med Chem Lett 2011; 21:5557-61. [DOI: 10.1016/j.bmcl.2011.06.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/19/2011] [Indexed: 11/24/2022]
|
17
|
Santra S, Andreana PR. A Rapid, One-Pot, Microwave-Influenced Synthesis of Spiro-2,5-diketopiperazines via a Cascade Ugi/6-Exo-Trig Aza-Michael Reaction. J Org Chem 2011; 76:2261-4. [PMID: 21351784 DOI: 10.1021/jo102305q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Soumava Santra
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
18
|
Abstract
Glucocorticoid action is mediated by glucocorticoid receptor (GR), which upon cortisol binding is activated and regulates the transcriptional expression of target genes and downstream physiological functions. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to active cortisol. Since cortisol is also produced through biosynthesis in the adrenal glands, the total cortisol level in a given tissue is determined by both the circulating cortisol concentration and the local 11β-HSD1 activity. 11β-HSD1 is expressed in liver, adipose, brain, and placenta. Since it contributes to the local cortisol levels in these tissues, 11β-HSD1 plays a critical role in glucocorticoid action. The metabolic symptoms caused by glucocorticoid excess in Cushing's syndrome overlap with the characteristics of the metabolic syndrome, suggesting that increased glucocorticoid activity may play a role in the etiology of the metabolic syndrome. Consistent with this notion, elevated adipose expression of 11β-HSD1 induced metabolic syndrome-like phenotypes in mice. Thus, 11β-HSD1 is a proposed therapeutic target to normalize glucocorticoid excess in a tissue-specific manner and mitigate obesity and insulin resistance. Selective inhibitors of 11β-HSD1 are under development for the treatment of type 2 diabetes and other components of the metabolic syndrome.
Collapse
Affiliation(s)
- Minghan Wang
- Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Mail Stop 29-1-A, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
19
|
Discovery and optimization of adamantyl carbamate inhibitors of 11β-HSD1. Bioorg Med Chem Lett 2010; 20:6725-9. [DOI: 10.1016/j.bmcl.2010.08.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/28/2010] [Accepted: 08/31/2010] [Indexed: 11/21/2022]
|
20
|
|
21
|
Abstract
Cyclobutanones are essentially unknown as reactants in isonitrile-based multicomponent reactions. Ugi reactions of cyclobutanone and Passerini reactions of tetramethylcyclobutane-1,3-dione have been performed in this work. These reactions are significantly enhanced by being conducted in water, a subject of recent interest whose basis is still in question but whose effects are beyond doubt. The Ugi reaction of cyclobutanone has been used in a brief synthesis of an aspartame analogue.
Collapse
Affiliation(s)
- Michael C Pirrung
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | | |
Collapse
|
22
|
Siu M, Johnson TO, Wang Y, Nair SK, Taylor WD, Cripps SJ, Matthews JJ, Edwards MP, Pauly TA, Ermolieff J, Castro A, Hosea NA, LaPaglia A, Fanjul AN, Vogel JE. N-(Pyridin-2-yl) arylsulfonamide inhibitors of 11β-hydroxysteroid dehydrogenase type 1: Discovery of PF-915275. Bioorg Med Chem Lett 2009; 19:3493-7. [DOI: 10.1016/j.bmcl.2009.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/03/2009] [Accepted: 05/04/2009] [Indexed: 11/24/2022]
|
23
|
Katsuyama I. Synthesis of Trifluoromethyl-Containing Pyridines and Their Applications to Biological Active Molecules. J SYN ORG CHEM JPN 2009. [DOI: 10.5059/yukigoseikyokaishi.67.992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Becker CL, Engstrom KM, Kerdesky FA, Tolle JC, Wagaw SH, Wang W. A Convergent Process for the Preparation of Adamantane 11-β-HSD-1 Inhibitors. Org Process Res Dev 2008. [DOI: 10.1021/op800065q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Calvin L. Becker
- Process Chemistry and Process Analytical Chemistry, Department R450, Building R13, Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064, U.S.A
| | - Kenneth M. Engstrom
- Process Chemistry and Process Analytical Chemistry, Department R450, Building R13, Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064, U.S.A
| | - Francis A. Kerdesky
- Process Chemistry and Process Analytical Chemistry, Department R450, Building R13, Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064, U.S.A
| | - John C. Tolle
- Process Chemistry and Process Analytical Chemistry, Department R450, Building R13, Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064, U.S.A
| | - Seble H. Wagaw
- Process Chemistry and Process Analytical Chemistry, Department R450, Building R13, Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064, U.S.A
| | - Weifeng Wang
- Process Chemistry and Process Analytical Chemistry, Department R450, Building R13, Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064, U.S.A
| |
Collapse
|
25
|
Akritopoulou-Zanze I. Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 2008; 12:324-31. [PMID: 18312861 DOI: 10.1016/j.cbpa.2008.02.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/29/2022]
|
26
|
Webster SP, Pallin TD. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors as therapeutic agents. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.12.1407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Webster SP, Ward P, Binnie M, Craigie E, McConnell KMM, Sooy K, Vinter A, Seckl JR, Walker BR. Discovery and biological evaluation of adamantyl amide 11beta-HSD1 inhibitors. Bioorg Med Chem Lett 2007; 17:2838-43. [PMID: 17350260 DOI: 10.1016/j.bmcl.2007.02.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/18/2022]
Abstract
A series of adamantyl amide 11beta-HSD1 inhibitors has been discovered and chemically modified. Selected compounds are selective for 11beta-HSD1 over 11beta-HSD2 and possess excellent cellular potency in human and murine 11beta-HSD1 assays. Good pharmacodynamic characteristics are observed in ex vivo assays.
Collapse
Affiliation(s)
- Scott P Webster
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|