1
|
Poonia P, Sharma M, Jha P, Chopra M. Pharmacophore-based virtual screening of ZINC database, molecular modeling and designing new derivatives as potential HDAC6 inhibitors. Mol Divers 2023; 27:2053-2071. [PMID: 36214962 DOI: 10.1007/s11030-022-10540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
To date, many HDAC6 inhibitors have been identified and developed but none is clinically approved as of now. Through this study, we aim to obtain novel HDAC6 selective inhibitors and provide new insights into the detailed structural design of potential HDAC6 inhibitors. A HypoGen-based 3D QSAR HDAC6 pharmacophore was built and used as a query model to screen approximately 8 million ZINC database compounds. First, the ZINC Database was filtered using ADMET, followed by pharmacophore-based library screening. Using fit value and estimated activity cutoffs, a final set of 54 ZINC hits was obtained that were further investigated using molecular docking with the crystal structure of human histone deacetylase 6 catalytic domain 2 in complex with Trichostatin A (PDB ID: 5EDU). Through detailed in silico screening of the ZINC database, we shortlisted three hits as the lead molecules for designing novel HDAC6 inhibitors with better efficacy. Docking with 5EDU, followed by ADMET and TOPKAT analysis of modified ZINC hits provided 9 novel potential HDAC6 inhibitors that possess better docking scores and 2D interactions as compared to the control ZINC hit molecules. Finally, a 50 ns MD analysis run followed by Protein-Ligand Interaction Energy (PLIE) analysis of the top scored hits provided a novel molecule N1 that showed promisingly similar results to that of Ricolinostat (a known HDAC6 inhibitor). The comparable result of the designed hits to established HDAC6 inhibitors suggests that these compounds might prove to be successful HDAC6 inhibitors in future. Designed novel hits that might act as good HDAC6 inhibitors derived from ZINC database using combined molecular docking and modeling approaches.
Collapse
Affiliation(s)
- Priya Poonia
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Monika Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Prakash Jha
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Madhu Chopra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India.
| |
Collapse
|
2
|
Frühauf A, Behringer M, Meyer-Almes FJ. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023; 28:5686. [PMID: 37570656 PMCID: PMC10419652 DOI: 10.3390/molecules28155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. Hence, the exploration of five-ring heterocycles remains an important research area in medicinal chemistry, with the aim of discovering new therapeutic agents for various diseases. This review addresses the incorporation of heteroatoms such as nitrogen, oxygen and sulfur into the aromatic ring of these heterocyclic compounds, enhancing their polarity and facilitating both aromatic stacking interactions and the formation of hydrogen bonds. Histone deacetylases are present in numerous multiprotein complexes within the epigenetic machinery and play a central role in various cellular processes. They have emerged as important targets for cancer, neurodegenerative diseases and other therapeutic indications. In histone deacetylase inhibitors (HDACi's), five-ring heterocycles perform various functions as a zinc-binding group, a linker or head group, contributing to binding activity and selective recognition. This review focuses on providing an up-to-date overview of the different five-membered heterocycles utilized in HDACi motifs, highlighting their biological properties. It summarizes relevant publications from the past decade, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Anton Frühauf
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Martin Behringer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| |
Collapse
|
3
|
Riddhidev B, Endri K, Sabitri L, Kotsull Lauren N, Nishanth K, Dragan I, Mary Kay H P, James S, William T, L M Viranga T. Rational design of metabolically stable HDAC inhibitors: An overhaul of trifluoromethyl ketones. Eur J Med Chem 2022; 244:114807. [PMID: 36244186 PMCID: PMC10257519 DOI: 10.1016/j.ejmech.2022.114807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
Abstract
Epigenetic regulation of gene expression using histone deacetylase (HDAC) inhibitors is a promising strategy for developing new anticancer agents. The most common HDAC inhibitors are hydroxamates, which, though highly potent, have limitations due to their poor pharmacokinetic properties and lack of isoform selectivity. Trifluoromethylketones (TFMK) developed as alternatives to hydroxamates are rapidly metabolized to inactive trifluoromethyl alcohols in vivo, which prevented their further development as potential drug candidates. In order to overcome this limitation, we designed trifluoropyruvamides (TFPAs) as TFMK surrogates. The presence of an additional electron withdrawing group next to the ketone carbonyl group made the hydrate form of the ketone more stable, thus preventing its metabolic reduction to alcohol in vivo. In addition, this structural modification reduces the potential of the TFMK group to act as a covalent warhead to eliminate off-target effects. Additional structural changes in the cap group of the inhibitors gave analogues with IC50 values ranging from upper nanomolar to low micromolar in the cytotoxicity assay, and they were more selective for cancer cells over normal cells. Some of the most active analogues inhibited HDAC enzymes with low nanomolar IC50 values and were found to be more selective for HDAC8 over other isoforms. These molecules provide a new class of HDAC inhibitors with a metabolically stable metal-binding group that could be used to develop selective HDAC inhibitors by further structural modification.
Collapse
Affiliation(s)
- Banerjee Riddhidev
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Karaj Endri
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Lamichhane Sabitri
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - N Kotsull Lauren
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Kuganesan Nishanth
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - Isailovic Dragan
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - Pflum Mary Kay H
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Slama James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Taylor William
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA.
| | - Tillekeratne L M Viranga
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
4
|
Frühauf A, Meyer-Almes FJ. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021; 26:5151. [PMID: 34500583 PMCID: PMC8434074 DOI: 10.3390/molecules26175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany;
| |
Collapse
|
5
|
Sharma M, Jha P, Verma P, Chopra M. Combined comparative molecular field analysis, comparative molecular similarity indices analysis, molecular docking and molecular dynamics studies of histone deacetylase 6 inhibitors. Chem Biol Drug Des 2019; 93:910-925. [PMID: 30667160 DOI: 10.1111/cbdd.13488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/04/2023]
Abstract
Human histone deacetylase isoform 6 (HDAC6) has been shown to have an immense role in cell motility and aggresome formation and is being an attractive selective target for the treatment of multiple tumour types and neurodegenerative conditions. The discovery of selective HDAC6 inhibitors with new chemical functionalities is therefore of utmost interest to researchers. In order to examine the structural requirements for HDAC6-specific inhibitors and to derive predictive model which can be used for designing new selective HDAC6 inhibitors, a three-dimensional quantitative structure-activity relationship study was carried out on a diverse set of ligands using common feature-based pharmacophore alignment followed by employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The models displayed high correlation of 0.978 and 0.991 for best CoMFA and CoMSIA models, respectively, and a good statistical significance. The model could be used for predicting activities of the test set compounds as well as for deriving useful information regarding steric, electrostatic, hydrophobic properties of the molecules used in this study. Further, the training and test set molecules were docked into the HDAC6 binding site and molecular dynamics was carried out to suggest structural requirements for design of new inhibitors.
Collapse
Affiliation(s)
- Monika Sharma
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Priyanka Verma
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Depetter Y, Geurs S, Vanden Bussche F, De Vreese R, Franceus J, Desmet T, De Wever O, D'hooghe M. Assessment of the trifluoromethyl ketone functionality as an alternative zinc-binding group for selective HDAC6 inhibition. MEDCHEMCOMM 2018; 9:1011-1016. [PMID: 30108990 PMCID: PMC6072519 DOI: 10.1039/c8md00107c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/04/2018] [Indexed: 01/23/2023]
Abstract
Recent studies point towards the possible disadvantages of using hydroxamic acid-based zinc-binding groups in HDAC inhibitors due to e.g. mutagenicity issues. In this work, we elaborated on our previously developed Tubathian series, a class of highly selective thiaheterocyclic HDAC6 inhibitors, by replacing the benzohydroxamic acid function by an alternative zinc chelator, i.e., an aromatic trifluoromethyl ketone. Unfortunately, these compounds showed a reduced potency to inhibit HDAC6 as compared to their hydroxamic acid counterparts. In agreement, the most active trifluoromethyl ketone was unable to influence the growth of SK-OV-3 ovarian cancer cells nor to alter the acetylation status of tubulin and histone H3. These data suggest that replacement of the zinc-binding hydroxamic acid function with a trifluoromethyl ketone zinc-binding moiety within reported benzohydroxamic HDAC6 inhibitors should not be considered as a standard strategy in HDAC inhibitor development.
Collapse
Affiliation(s)
- Yves Depetter
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
- Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Corneel Heymanslaan 10 , B-9000 Ghent , Belgium
- Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Silke Geurs
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Flore Vanden Bussche
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Rob De Vreese
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB) , Department of Biotechnology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB) , Department of Biotechnology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Corneel Heymanslaan 10 , B-9000 Ghent , Belgium
- Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Matthias D'hooghe
- SynBioC Research Group , Department of Green Chemistry and Technology , Faculty of Bioscience Engineering , Ghent University , Coupure Links 653 , B-9000 Ghent , Belgium .
| |
Collapse
|
7
|
Hou X, Du J, Liu R, Zhou Y, Li M, Xu W, Fang H. Enhancing the Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Customized ZBG Features: A Case Study Using Histone Deacetylase 8. J Chem Inf Model 2015; 55:861-71. [DOI: 10.1021/ci500762z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuben Hou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, China
| | - Renshuai Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yi Zhou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenfang Xu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Hao Fang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Synthesis of 5-Trifluoroacetylpyrrole-2-Carbaldehydes*. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Kaushik NK, Kim HS, Chae YJ, Lee YN, Kwon GC, Choi EH, Kim IT. Synthesis and anticancer activity of di(3-thienyl)methanol and di(3-thienyl)methane. Molecules 2012; 17:11456-68. [PMID: 23018921 PMCID: PMC6268370 DOI: 10.3390/molecules171011456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022] Open
Abstract
Di(3-thienyl)methanol (2) and di(3-thienyl)methane (3) have been synthesized and screened against the T98G (brain cancer) cell line. Treatment induced cell death (MTT and macro-colony assay), growth inhibition, cytogenetic damage (micronuclei formation), were studied as cellular response parameters. Treatment with the compounds enhanced growth inhibition and cell death in a concentration dependent manner in both T98G and HEK (normal) cell lines. At higher concentrations (>20 µg/mL) the cytotoxic effects of the compounds were highly significant. The effect on clonogenic capacity and micronuclei formation observed after treatment of cells. Amongst the compounds, compound 2 exhibited potent activity against T98G brain cancer cells. Despite potent in vitro activity, both compounds exhibited less cytotoxicity against normal human HEK cells at all effective concentrations.
Collapse
Affiliation(s)
| | - Hong Seon Kim
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Korea
| | - Young June Chae
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Korea
| | - Young Nam Lee
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Korea
| | - Gi-Chung Kwon
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - In Tae Kim
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Korea
- Author to whom correspondence should be addressed; ; Tel.: +82-10-3795-1479; Fax: +82-2-909-1978
| |
Collapse
|
10
|
Dallavalle S, Pisano C, Zunino F. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 2012; 84:756-65. [DOI: 10.1016/j.bcp.2012.06.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/11/2012] [Accepted: 06/14/2012] [Indexed: 11/27/2022]
|
11
|
Raduán M, Padrosa J, Pla-Quintana A, Parella T, Roglans A. Functionalization of the 3-Position of Thiophene and Benzo[b]thiophene Moieties by Palladium-Catalyzed CC Bond Forming Reactions using Diazonium Salts. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Developing consensus 3D-QSAR and pharmacophore models for several beta-secretase, farnesyl transferase and histone deacetylase inhibitors. J Mol Model 2011; 18:675-92. [DOI: 10.1007/s00894-011-1094-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 04/14/2011] [Indexed: 12/20/2022]
|
13
|
Ontoria JM, Altamura S, Di Marco A, Ferrigno F, Laufer R, Muraglia E, Palumbi MC, Rowley M, Scarpelli R, Schultz-Fademrecht C, Serafini S, Steinkühler C, Jones P. Identification of Novel, Selective, and Stable Inhibitors of Class II Histone Deacetylases. Validation Studies of the Inhibition of the Enzymatic Activity of HDAC4 by Small Molecules as a Novel Approach for Cancer Therapy. J Med Chem 2009; 52:6782-9. [DOI: 10.1021/jm900555u] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jesus M. Ontoria
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Sergio Altamura
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Annalise Di Marco
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Federica Ferrigno
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Ralph Laufer
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Ester Muraglia
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Maria Cecilia Palumbi
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Michael Rowley
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Rita Scarpelli
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Carsten Schultz-Fademrecht
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Sergio Serafini
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Christian Steinkühler
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| | - Philip Jones
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti SpA (IRBM-MRL, Rome), Via Pontina Km 30,600, I-00040 Pomezia, Italy
| |
Collapse
|
14
|
Tessier P, Smil DV, Wahhab A, Leit S, Rahil J, Li Z, Déziel R, Besterman JM. Diphenylmethylene hydroxamic acids as selective class IIa histone deacetylase inhibitors. Bioorg Med Chem Lett 2009; 19:5684-8. [DOI: 10.1016/j.bmcl.2009.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
|
15
|
Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 2009; 280:211-21. [PMID: 19289255 DOI: 10.1016/j.canlet.2009.02.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/09/2009] [Indexed: 11/23/2022]
Abstract
Histone deacetylases (HDACs) have emerged as attractive drug targets, particularly for neoplastic indications. This large family is divided into four classes, of which three consist of zinc-dependent enzymes, and inhibitors of these are the subject of this review. Currently, there are several inhibitors advancing through clinical trials, all of which inhibit multiple isoforms of these three classes. While promising, these compounds have exhibited toxicities in the clinic that might limit their potential, particularly in solid tumors. It may be possible to reduce some of the toxicity by specifically targeting only the isoform(s) involved in maintaining that particular tumor and spare other isoforms that are uninvolved or even beneficial. This review examines the selectivity and toxicity of HDAC inhibitors currently in clinic, comparing pan-HDAC inhibitors to Class I selective compounds. The rationale for isoform-specific inhibitors is examined. The current status of isoform-specific inhibitor development is analyzed, especially inhibitors of HDAC1, 2, 4 and 8 enzymes, and the potential clinical utility of these compounds is discussed.
Collapse
|
16
|
Chapter 5.1: Five-Membered Ring Systems: Thiophenes and Se/Te Analogues. PROGRESS IN HETEROCYCLIC CHEMISTRY 2009. [DOI: 10.1016/s0959-6380(09)70032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|