1
|
Zirimwabagabo JO, Jailani ABA, Avgoustou P, Tozer MJ, Gibson KR, Glossop PA, Mills JEJ, Porter RA, Blaney P, Wang N, Skerry TM, Richards GO, Harrity JPA. Discovery of a First-In-Class Small Molecule Antagonist against the Adrenomedullin-2 Receptor: Structure-Activity Relationships and Optimization. J Med Chem 2021; 64:3299-3319. [PMID: 33666424 PMCID: PMC8006142 DOI: 10.1021/acs.jmedchem.0c02191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Class B G-protein-coupled receptors (GPCRs) remain an underexploited target for drug development. The calcitonin receptor (CTR) family is particularly challenging, as its receptors are heteromers comprising two distinct components: the calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) together with one of three accessory proteins known as receptor activity-modifying proteins (RAMPs). CLR/RAMP1 forms a CGRP receptor, CLR/RAMP2 forms an adrenomedullin-1 (AM1) receptor, and CLR/RAMP3 forms an adrenomedullin-2 (AM2) receptor. The CTR/RAMP complexes form three distinct amylin receptors. While the selective blockade of AM2 receptors would be therapeutically valuable, inhibition of AM1 receptors would cause clinically unacceptable increased blood pressure. We report here a systematic study of structure-activity relationships that has led to the development of first-in-class AM2 receptor antagonists. These compounds exhibit therapeutically valuable properties with 1000-fold selectivity over the AM1 receptor. These results highlight the therapeutic potential of AM2 antagonists.
Collapse
Affiliation(s)
| | - Ameera B. A. Jailani
- Department
of Oncology and Metabolism, University of
Sheffield, Sheffield S10 2TN, U.K.
| | - Paris Avgoustou
- Department
of Oncology and Metabolism, University of
Sheffield, Sheffield S10 2TN, U.K.
| | | | - Karl R. Gibson
- Sandexis
Medicinal Chemistry Ltd., Sandwich, Kent CT13 9ND, U.K.
| | - Paul A. Glossop
- Sandexis
Medicinal Chemistry Ltd., Sandwich, Kent CT13 9ND, U.K.
| | | | | | - Paul Blaney
- Concept
Life Sciences, High Peak SK23 0PG, U.K.
| | - Ning Wang
- Department
of Oncology and Metabolism, University of
Sheffield, Sheffield S10 2TN, U.K.
| | - Timothy M. Skerry
- Department
of Oncology and Metabolism, University of
Sheffield, Sheffield S10 2TN, U.K.
| | - Gareth O. Richards
- Department
of Oncology and Metabolism, University of
Sheffield, Sheffield S10 2TN, U.K.
| | | |
Collapse
|
2
|
Avgoustou P, Jailani ABA, Zirimwabagabo JO, Tozer MJ, Gibson KR, Glossop PA, Mills JEJ, Porter RA, Blaney P, Bungay PJ, Wang N, Shaw AP, Bigos KJA, Holmes JL, Warrington JI, Skerry TM, Harrity JPA, Richards GO. Discovery of a First-in-Class Potent Small Molecule Antagonist against the Adrenomedullin-2 Receptor. ACS Pharmacol Transl Sci 2020; 3:706-719. [PMID: 32832872 DOI: 10.1021/acsptsci.0c00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 01/10/2023]
Abstract
The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.
Collapse
Affiliation(s)
- Paris Avgoustou
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Ameera B A Jailani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | | | | | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | - Paul A Glossop
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | - James E J Mills
- Sandexis Medicinal Chemistry Ltd, Sandwich, Kent CT13 9ND, U.K
| | | | - Paul Blaney
- Concept Life Sciences, High Peak, SK23 0PG, U.K
| | - Peter J Bungay
- Sympetrus Ltd., Bishop's Stortford, Hertfordshire CM23 3BT, U.K
| | - Ning Wang
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Alice P Shaw
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Kamilla J A Bigos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Joseph L Holmes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Jessica I Warrington
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, U.K
| | - Gareth O Richards
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2TN, U.K
| |
Collapse
|
3
|
Dubowchik GM, Conway CM, Xin AW. Blocking the CGRP Pathway for Acute and Preventive Treatment of Migraine: The Evolution of Success. J Med Chem 2020; 63:6600-6623. [PMID: 32058712 DOI: 10.1021/acs.jmedchem.9b01810] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pivotal role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology was identified over 30 years ago, but the successful clinical development of targeted therapies has only recently been realized. This Perspective traces the decades long evolution of medicinal chemistry required to advance small molecule CGRP receptor antagonists, also called gepants, including the current clinical agents rimegepant, vazegepant, ubrogepant, and atogepant. Providing clinically effective blockade of CGRP signaling required surmounting multiple challenging hurdles, including defeating a sizable ligand with subnanomolar affinity for its receptor, designing antagonists with an extended confirmation and multiple pharmacophores while retaining solubility and oral bioavailability, and achieving circulating free plasma levels that provided near maximal CGRP receptor coverage. The clinical efficacy of oral and intranasal gepants and the injectable CGRP monoclonal antibodies (mAbs) are described, as are recent synthetic developments that have benefited from new structural biology data. The first oral gepant was recently approved and heralds a new era in the treatment of migraine.
Collapse
Affiliation(s)
- Gene M Dubowchik
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| | - Charles M Conway
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| | - Alison W Xin
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
4
|
Wang S, Dong G, Sheng C. Structural simplification: an efficient strategy in lead optimization. Acta Pharm Sin B 2019; 9:880-901. [PMID: 31649841 PMCID: PMC6804494 DOI: 10.1016/j.apsb.2019.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/04/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
The trend toward designing large hydrophobic molecules for lead optimization is often associated with poor drug-likeness and high attrition rates in drug discovery and development. Structural simplification is a powerful strategy for improving the efficiency and success rate of drug design by avoiding "molecular obesity". The structural simplification of large or complex lead compounds by truncating unnecessary groups can not only improve their synthetic accessibility but also improve their pharmacokinetic profiles, reduce side effects and so on. This review will summarize the application of structural simplification in lead optimization. Numerous case studies, particularly those involving successful examples leading to marketed drugs or drug-like candidates, will be introduced and analyzed to illustrate the design strategies and guidelines for structural simplification.
Collapse
Key Words
- 11β-HSD, 11β-hydroxysteroid dehydrogenase
- 3D, three-dimensional
- ADMET, absorption, distribution, metabolism, excretion and toxicity
- AM2, adrenomedullin-2 receptor
- BIOS, biology-oriented synthesis
- CCK, cholecystokinin receptor
- CGRP, calcitonin gene-related peptide
- Drug design
- Drug discovery
- GlyT1, glycine transport 1
- HBV, hepatitis B virus
- HDAC, histone deacetylase
- HLM, human liver microsome
- JAKs, Janus tyrosine kinases
- LE, ligand efficiency
- Lead optimization
- LeuRS, leucyl-tRNA synthetase
- MCRs, multicomponent reactions
- MDR-TB, multidrug-resistant tuberculosis
- MW, molecular weight
- NP, natural product
- NPM, nucleophosmin
- PD, pharmacodynamic
- PK, pharmacokinetic
- PKC, protein kinase C
- Pharmacophore-based simplification
- Reducing chiral centers
- Reducing rings number
- SAHA, vorinostat
- SAR, structure‒activity relationship
- SCONP, structural classification of natural product
- Structural simplification
- Structure-based simplification
- TSA, trichostatin A
- TbLeuRS, T. brucei LeuRS
- ThrRS, threonyl-tRNA synthetase
- VANGL1, van-Gogh-like receptor protein 1
- aa-AMP, aminoacyl-AMP
- aa-AMS, aminoacylsulfa-moyladenosine
- aaRSs, aminoacyl-tRNA synthetases
- hA3 AR, human A3 adenosine receptor
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Bell IM. Calcitonin Gene-Related Peptide Receptor Antagonists: New Therapeutic Agents for Migraine. J Med Chem 2014; 57:7838-58. [DOI: 10.1021/jm500364u] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ian M. Bell
- Department of Discovery Chemistry,
Merck Research Laboratories, West
Point, Pennsylvania 19486, United States
| |
Collapse
|
6
|
Kim JJ, Wood MR, Stachel SJ, de Leon P, Nomland A, Stump CA, McWherter MA, Schirripa KM, Moore EL, Salvatore CA, Selnick HG. (E)-Alkenes as replacements of amide bonds: development of novel and potent acyclic CGRP receptor antagonists. Bioorg Med Chem Lett 2013; 24:258-61. [PMID: 24332093 DOI: 10.1016/j.bmcl.2013.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
A new class of CGRP receptor antagonists was identified by replacing the central amide of a previously identified anilide lead structure with ethylene, ethane, or ethyne linkers. (E)-Alkenes as well as alkynes were found to preserve the proper bioactive conformation of the amides, necessary for efficient receptor binding. Further exploration resulted in several potent compounds against CGRP-R with low susceptibility to P-gp mediated efflux.
Collapse
Affiliation(s)
- June J Kim
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States.
| | - Michael R Wood
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Shawn J Stachel
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Pablo de Leon
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Ashley Nomland
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Craig A Stump
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Melody A McWherter
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Kathy M Schirripa
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Eric L Moore
- Department of Pain Research, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Christopher A Salvatore
- Department of Pain Research, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Harold G Selnick
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, 770 Sumneytown Pike, West Point, PA 19486, United States
| |
Collapse
|
7
|
Hoyer D, Bartfai T. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach. Chem Biodivers 2013; 9:2367-87. [PMID: 23161624 DOI: 10.1002/cbdv.201200288] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/06/2022]
Abstract
The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
8
|
Wood MR, Schirripa KM, Kim JJ, Bednar RA, Fay JF, Bruno JG, Moore EL, Mosser SD, Roller S, Salvatore CA, Vacca JP, Selnick HG. Novel CGRP receptor antagonists from central amide replacements causing a reversal of preferred chirality. Bioorg Med Chem Lett 2010; 20:6827-30. [DOI: 10.1016/j.bmcl.2010.08.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
|
9
|
Fischer MJM. Calcitonin gene-related peptide receptor antagonists for migraine. Expert Opin Investig Drugs 2010; 19:815-23. [PMID: 20482328 DOI: 10.1517/13543784.2010.490829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE OF THE FIELD Migraine is a highly prevalent disabling condition, and the current treatment options are not satisfactory. The role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology is well established. CGRP receptor antagonists address this new target and have the potential to improve therapy for both responders and non-responders to previous options. AREAS COVERED IN THIS REVIEW This review describes CGRP, its receptors and their role in the pathophysiology of migraine. CGRP receptor antagonists are a recent development; all reported antagonists are reported in chronological order. The experimental evidence, as well as all clinical trials since the first proof-of-concept study in 2004, is discussed. WHAT THE READER WILL GAIN An overview of the CGRP system and why it provides an attractive drug target for headache. The main focus is on the currently presented CGRP receptor antagonists and clinical evidence for this new therapeutic option. TAKE HOME MESSAGE CGRP receptor antagonists will provide an additional and valuable therapeutic option for the treatment of headaches.
Collapse
|
10
|
Bell IM, Gallicchio SN, Wood MR, Quigley AG, Stump CA, Zartman CB, Fay JF, Li CC, Lynch JJ, Moore EL, Mosser SD, Prueksaritanont T, Regan CP, Roller S, Salvatore CA, Kane SA, Vacca JP, Selnick HG. Discovery of MK-3207: A Highly Potent, Orally Bioavailable CGRP Receptor Antagonist. ACS Med Chem Lett 2010; 1:24-9. [PMID: 24900170 DOI: 10.1021/ml900016y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/05/2010] [Indexed: 12/30/2022] Open
Abstract
Incorporation of polar functionality into a series of highly potent calcitonin gene-related peptide (CGRP) receptor antagonists was explored in an effort to improve pharmacokinetics. This strategy identified piperazinone analogues that possessed improved solubility at acidic pH and increased oral bioavailability in monkeys. Further optimization led to the discovery of the clinical candidate 2-[(8R)-8-(3,5-difluorophenyl)-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(2R)-2'-oxo-1,1',2',3-tetrahydrospiro[indene-2,3'-pyrrolo[2,3-b]pyridin]-5-yl]acetamide (MK-3207) (4), the most potent orally active CGRP receptor antagonist described to date.
Collapse
|