1
|
Yanagita RC, Suzuki Y, Kawanami Y, Hanaki Y, Irie K. Effect of phenolic-hydroxy-group incorporation on the biological activity of a simplified aplysiatoxin analog with an (R)-(-)-carvone-based core. Biosci Biotechnol Biochem 2024; 88:992-998. [PMID: 38936828 DOI: 10.1093/bbb/zbae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
We synthesized a phenolic hydroxy group-bearing version (1) of a simplified analog of aplysiatoxin comprising a carvone-based conformation-controlling unit. Thereafter, we evaluated its antiproliferative activity against human cancer cell lines and its binding affinity to protein kinase C (PKC) isozymes. The antiproliferative activity and PKC-binding ability increased with the introduction of the phenolic hydroxy group. The results of molecular dynamics simulations and subsequent relative binding free-energy calculations conducted using an alchemical transformation procedure showed that the phenolic hydroxy group in 1 could form a hydrogen bond with a phospholipid and the PKC. The former hydrogen bonding formation facilitated the partitioning of the compound from water to the phospholipid membrane and the latter compensated for the loss of hydrogen bond with the phospholipid upon binding to the PKC. This information may facilitate the development of rational design methods for PKC ligands with additional hydrogen bonding groups.
Collapse
Affiliation(s)
- Ryo C Yanagita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Yoshiyuki Suzuki
- Division of Applied Biological and Rare Sugar Sciences, Graduate School of Agriculture, Kagawa University, Kagawa, Japan
| | - Yasuhiro Kawanami
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Yusuke Hanaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research and Development Promotion Organization, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
2
|
A simplified analog of debromoaplysiatoxin lacking the B-ring of spiroketal moiety retains protein kinase C-binding and antiproliferative activities. Bioorg Med Chem 2022; 73:116988. [DOI: 10.1016/j.bmc.2022.116988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
|
3
|
Yanagita RC, Otani M, Hatanaka S, Nishi H, Miyake S, Hanaki Y, Sato M, Kawanami Y, Irie K. Analysis of binding mode of vibsanin A with protein kinase C C1 domains: An experimental and molecular dynamics simulation study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
C. Yanagita R, Ashida Y, Kawanami Y, Okamura M, Dan S, Irie K. Synthesis, Conformation, and Biological Activities of a Des-A-Ring Analog of 18-Deoxy-Aplog-1, a Simplified Analog of Debromoaplysiatoxin. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ding CYG, Pang LM, Liang ZX, Goh KKK, Glukhov E, Gerwick WH, Tan LT. MS/MS-Based Molecular Networking Approach for the Detection of Aplysiatoxin-Related Compounds in Environmental Marine Cyanobacteria. Mar Drugs 2018; 16:md16120505. [PMID: 30551660 PMCID: PMC6315786 DOI: 10.3390/md16120505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Certain strains of cyanobacteria produce a wide array of cyanotoxins, such as microcystins, lyngbyatoxins and aplysiatoxins, that are associated with public health issues. In this pilot study, an approach combining LC-MS/MS and molecular networking was employed as a rapid analytical method to detect aplysiatoxins present in four environmental marine cyanobacterial samples collected from intertidal areas in Singapore. Based on 16S-ITS rRNA gene sequences, these filamentous cyanobacterial samples collected from Pulau Hantu were determined as Trichodesmium erythraeum, Oscillatoria sp. PAB-2 and Okeania sp. PNG05-4. Organic extracts were prepared and analyzed on LC-HRMS/MS and Global Natural Product Social Molecular Networking (GNPS) for the presence of aplysiatoxin-related molecules. From the molecular networking, six known compounds, debromoaplysiatoxin (1), anhydrodebromoaplysiatoxin (2), 3-methoxydebromoaplysiatoxin (3), aplysiatoxin (4), oscillatoxin A (5) and 31-noroscillatoxin B (6), as well as potential new analogues, were detected in these samples. In addition, differences and similarities in molecular networking clusters related to the aplysiatoxin molecular family were observed in extracts of Trichodesmium erythraeum collected from two different locations and from different cyanobacterial species found at Pulau Hantu, respectively.
Collapse
Affiliation(s)
- Chi Ying Gary Ding
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Kau Kiat Kelvin Goh
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, (K.K.K.G.).
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA.
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
6
|
Loss of the Phenolic Hydroxyl Group and Aromaticity from the Side Chain of Anti-Proliferative 10-Methyl-aplog-1, a Simplified Analog of Aplysiatoxin, Enhances Its Tumor-Promoting and Proinflammatory Activities. Molecules 2017; 22:molecules22040631. [PMID: 28406454 PMCID: PMC6153940 DOI: 10.3390/molecules22040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/29/2023] Open
Abstract
Aplysiatoxin (ATX) is a protein kinase C (PKC) activator with potent tumor-promoting activity. In contrast, 10-methyl-aplog-1 (1), a simplified analog of ATX, was anti-proliferative towards several cancer cell lines without significant tumor-promoting and proinflammatory activities. To determine the effects of the phenolic group on the biological activities of 1, we synthesized new derivatives (2, 3) that lack the phenolic hydroxyl group and/or the aromatic ring. Compound 2, like 1, showed potent anti-proliferative activity against several cancer cell lines, but little with respect to tumor-promoting and proinflammatory activities. In contrast, 3 exhibited weaker growth inhibitory activity, and promoted inflammation and tumorigenesis. The binding affinity of 3 for PKCδ, which is involved in growth inhibition and apoptosis, was several times lower than those of 1 and 2, possibly due to the absence of the hydrogen bond and CH/π interaction between its side chain and either Met-239 or Pro-241 in the PKCδ-C1B domain. These results suggest that both the aromatic ring and phenolic hydroxyl group can suppress the proinflammatory and tumor-promoting activities of 1 and, therefore, at least the aromatic ring in the side chain of 1 is indispensable for developing anti-cancer leads with potent anti-proliferative activity and limited side effects. In accordance with the binding affinity, the concentration of 3 necessary to induce PKCδ-GFP translocation to the plasma membrane and perinuclear regions in HEK293 cells was higher than that of 1 and 2. However, the translocation profiles for PKCδ-GFP due to induction by 1–3 were similar.
Collapse
|
7
|
Nakagawa Y. Structural Simplification of Natural Products Toward the Generation of Biologically and Therapeutically Valuable Molecules: Analog Design of Naturally-Occurring Protein Kinase C Activators. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Nakagawa
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
8
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Jiang W, Zhou W, Uchida H, Kikumori M, Irie K, Watanabe R, Suzuki T, Sakamoto B, Kamio M, Nagai H. A new lyngbyatoxin from the Hawaiian cyanobacterium Moorea producens. Mar Drugs 2014; 12:2748-59. [PMID: 24824022 PMCID: PMC4052313 DOI: 10.3390/md12052748] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/04/2023] Open
Abstract
Lyngbyatoxin A from the marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) is known as the causative agent of “swimmer’s itch” with its highly inflammatory effect. A new toxic compound was isolated along with lyngbyatoxin A from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies revealed the isolated compound had the same planar structure with that of lyngbyatoxin A. The results of optical rotation and CD spectra indicated that the compound was a new lyngbyatoxin A derivative, 12-epi-lyngbyatoxin A (1). While 12-epi-lyngbyatoxin A showed comparable toxicities with lyngbyatoxin A in cytotoxicity and crustacean lethality tests, it showed more than 100 times lower affinity for protein kinase Cδ (PKCδ) using the PKCδ-C1B peptide when compared to lyngbyatoxin A.
Collapse
Affiliation(s)
- Weina Jiang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Wei Zhou
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Hajime Uchida
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Masayuki Kikumori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ryuichi Watanabe
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan.
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan.
| | - Bryan Sakamoto
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | - Michiya Kamio
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| |
Collapse
|
10
|
Irie K, Yanagita RC. Synthesis and Biological Activities of Simplified Analogs of the Natural PKC Ligands, Bryostatin-1 and Aplysiatoxin. CHEM REC 2014; 14:251-67. [DOI: 10.1002/tcr.201300036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Ryo C. Yanagita
- Department of Applied Biological Science; Faculty of Agriculture, Kagawa University; Kagawa 761-0795 Japan
| |
Collapse
|
11
|
Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Mar Drugs 2014; 12:115-27. [PMID: 24394406 PMCID: PMC3917264 DOI: 10.3390/md12010115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 11/21/2022] Open
Abstract
Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively.
Collapse
|
12
|
Yanagita RC, Kamachi H, Kikumori M, Tokuda H, Suzuki N, Suenaga K, Nagai H, Irie K. Effects of the methoxy group in the side chain of debromoaplysiatoxin on its tumor-promoting and anti-proliferative activities. Bioorg Med Chem Lett 2013; 23:4319-23. [PMID: 23803585 DOI: 10.1016/j.bmcl.2013.05.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 11/15/2022]
Abstract
Debromoaplysiatoxin (DAT) is a tumor promoter isolated from sea hare and exhibits anti-proliferative activity against several cancer cell lines. To clarify key residues that are responsible for its tumor-promoting activity, we focused on the chiral methoxy group in the side chain, whose role had not yet been discussed or examined before. Demethoxy-DAT (8) was derived from DAT and we evaluated its tumor-promoting activity, anti-proliferative activity, and ability to bind to protein kinase C (PKC) isozymes. Compound 8 showed somewhat weaker tumor-promoting activity than that of DAT both in vitro and in vivo, but showed higher anti-proliferative activity against several cancer cell lines. Although the affinity to novel PKC isozymes of 8 was comparable to that of DAT, the affinity to conventional PKC isozymes decreased slightly. These results suggest that the methoxy group of DAT is one of the key residues critical for tumor-promoting activity but not for anti-proliferative activity. Since the methoxy group has little influence on the molecular hydrophobicity, this is the first report showing that structural factors other than hydrophobicity in the side chain of DAT affected its biological activities.
Collapse
Affiliation(s)
- Ryo C Yanagita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kamachi H, Tanaka K, Yanagita RC, Murakami A, Murakami K, Tokuda H, Suzuki N, Nakagawa Y, Irie K. Structure–activity studies on the side chain of a simplified analog of aplysiatoxin (aplog-1) with anti-proliferative activity. Bioorg Med Chem 2013; 21:2695-702. [DOI: 10.1016/j.bmc.2013.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/25/2022]
|
14
|
Raffier L, Piva O. Synthetic Studies on the Nhatrangins: Stereoselective Access to an Advanced Aldehyde Intermediate. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Ueda M. Chemical Biology of Natural Products on the Basis of Identification of Target Proteins. CHEM LETT 2012. [DOI: 10.1246/cl.2012.658] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Kikumori M, Yanagita RC, Tokuda H, Suzuki N, Nagai H, Suenaga K, Irie K. Structure–Activity Studies on the Spiroketal Moiety of a Simplified Analogue of Debromoaplysiatoxin with Antiproliferative Activity. J Med Chem 2012; 55:5614-26. [DOI: 10.1021/jm300566h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masayuki Kikumori
- Division of
Food Science and
Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo C. Yanagita
- Division of
Food Science and
Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological
Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Harukuni Tokuda
- Department of Complementary and Alternative Medicine, Clinical R&D, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Nobutaka Suzuki
- Department of Complementary and Alternative Medicine, Clinical R&D, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroshi Nagai
- Department
of Ocean Sciences, Tokyo University of Marine Science and Technology,
Tokyo 108-8477, Japan
| | - Kiyotake Suenaga
- Faculty
of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kazuhiro Irie
- Division of
Food Science and
Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Irie K, C. Yanagita R, Tokuda H, Suzuki N, Shu Y. Synthesis of Antineoplastic Analogs of Aplysiatoxin with Various Side Chain Structures. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Synthesis and biological evaluation of the 12,12-dimethyl derivative of Aplog-1, an anti-proliferative analog of tumor-promoting aplysiatoxin. Biosci Biotechnol Biochem 2011; 75:1167-73. [PMID: 21670518 DOI: 10.1271/bbb.110130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aplog-1 is a unique analog of tumor-promoting aplysiatoxin that inhibits tumor-promotion by phorbol diesters and proliferation of tumor cells. While the structural features relevant to the biological activities of Aplog-1 remain to be identified, recent studies by us have suggested that local hydrophobicity around the spiroketal moiety of Aplog-1 is a crucial determinant of its anti-proliferative activity. This hypothesis led us to design 12,12-dimethyl-Aplog-1 (3), in which a hydrophobic geminal dimethyl group is installed proximal to the spiroketal moiety to improve biological potency. As expected, 3 was more effective than Aplog-1 in inhibiting cancer cell growth and binding to protein kinase Cδ, a putative receptor responsible for the biological response of Aplog-1. Moreover, an induction test on Epstein-Barr virus early antigen demonstrated 3 to be a better anti-tumor promoter than Aplog-1. These results indicate that 3 is a superior derivative of Aplog-1, and thus a more promising lead for anti-cancer drugs.
Collapse
|