1
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
2
|
Dong Y, Xie C, Chen J, Shen A, Luo QQ, He B, Wang ZF, Chang B, Yang F, Shi ZC. Iron catalyzed C-C dehydrogenative coupling reaction: synthesis of arylquinones from quinones/hydroquinones. RSC Adv 2022; 12:3783-3787. [PMID: 35425366 PMCID: PMC8979275 DOI: 10.1039/d1ra08828a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
An atom-economical approach for the synthesis of arylquinones was achieved successfully via direct oxidative C-C dehydrogenative coupling reaction of quinones/hydroquinones with electron-rich arenes using an inexpensive Fe-I2-(NH4)2S2O8 system. The efficiency of this catalytic approach was established with a broad scope of substrates involving quinones and hydroquinones to give high yields (60-89%) of several arylated quinones. The present protocol is simple, practical, and shows good functional group tolerance.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Chun Xie
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Jia Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Ai Shen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Qi-Qi Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Zhi-Fan Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Bo Chang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Fan Yang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University Chengdu 610041 P. R. China
| |
Collapse
|
3
|
Yokoya M, Nakai K, Kawashima M, Kurakado S, Sirimangkalakitti N, Kino Y, Sugita T, Kimura S, Yamanaka M, Saito N. Inhibition of BACE1 and amyloid β aggregation by polyketide from Streptomyces sp. Chem Biol Drug Des 2021; 99:264-276. [PMID: 34757664 DOI: 10.1111/cbdd.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/12/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) causes cognitive impairment in the elderly and is a severe problem worldwide. One of the major reasons for the pathogenesis of AD is thought to be due to the accumulation of amyloid beta (Aβ) peptides that result in neuronal cell death in the brain. In this study, bioassay-guided fractionation was performed to develop seed compounds for anti-AD drugs that can act as dual inhibitors of BACE1 and Aβ aggregation from secondary metabolites produced by Streptomyces sp. To improve the solubility, the crude extracts were methylated with trimethylsilyl (TMS) diazomethane and then purified to yield polyketides 1-5, including the new compound 1. We synthesized the compounds 6 and 7 (original compounds 2 and 3, respectively), and their activities were evaluated. KS-619-1, the demethylated form of 4 and 5, was isolated and evaluated for its inhibitory activity. The IC50 values for BACE1 and Aβ aggregation were found to be 0.48 and 1.1 μM, respectively, indicating that KS-619-1 could be a lead compound for the development of therapeutic agents for AD.
Collapse
Affiliation(s)
- Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Keiyo Nakai
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Miki Kawashima
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan
| | - Natchanun Sirimangkalakitti
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan.,Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan
| | - Shinya Kimura
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Masamichi Yamanaka
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Naoki Saito
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
4
|
Yu G, Wang Y, Zhao J. Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson's disease. Biol Chem 2021; 403:253-263. [PMID: 34653323 DOI: 10.1515/hsz-2021-0312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson's disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.
Collapse
Affiliation(s)
- Gege Yu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Yonghui Wang
- Department of Neurosurgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Weifang, Shandong, 262500, China.,Department of Neurosurgery, Qingzhou People's Hospital, Weifang, 262500, China
| | - Jinhua Zhao
- Department of Neurology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| |
Collapse
|
5
|
Winant P, Dehaen W. A visible-light-induced, metal-free bis-arylation of 2,5-dichlorobenzoquinone. Beilstein J Org Chem 2021; 17:2315-2320. [PMID: 34621394 PMCID: PMC8450952 DOI: 10.3762/bjoc.17.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
A metal-free protocol for the direct bis-arylation of 2,5-dichlorobenzoquinone with aryldiazonium salts is reported. The reactive salts are generated in situ and converted to radicals through irradiation with visible light. Reaction products precipitate from the solvent, eliminating the need for purification and thus providing a novel green method for the synthesis of versatile bis-electrophiles.
Collapse
Affiliation(s)
- Pieterjan Winant
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Akagi Y, Komatsu T. Palladium-catalyzed arylation of 1,4-naphthoquinones with aryl iodides and its synthetic application to the benzo[b]phenanthridine skeleton. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
8
|
T.P AK, Pandaram S, Ilangovan A. Iron-mediated site-selective oxidative C–H/C–H cross-coupling of aryl radicals with quinones: synthesis of β-secretase-1 inhibitor B and related arylated quinones. Org Chem Front 2019. [DOI: 10.1039/c9qo00623k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenoxy radicals were converted intoparasite selectiveC-aryl radicals and coupled with quinones, using an inexpensive FeCl3–K2S2O8system, to obtain several arylated quinones, in good to moderate yields.
Collapse
|
9
|
Shu C, Shi CY, Sun Q, Zhou B, Li TY, He Q, Lu X, Liu RS, Ye LW. Generation of Endocyclic Vinyl Carbene Complexes via Gold-Catalyzed Oxidative Cyclization of Terminal Diynes: Toward Naphthoquinones and Carbazolequinones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04455] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chao Shu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Shi
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo Zhou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-You Li
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiao He
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Long-Wu Ye
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem 2018; 158:463-477. [PMID: 30243151 DOI: 10.1016/j.ejmech.2018.09.031] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in elderly people. Considering the multifactorial nature of AD, the concept of multi-target-directed ligands (MTDLs) has recently emerged as a new strategy for designing therapeutic agents on AD. MTDLs are confirmed to simultaneously affect diverse targets which contribute to etiology of AD. As the most potent approved drug, donepezil affects various events of AD, like inhibiting cholinesterases activities, anti-Aβ aggregation, anti-oxidative stress et al. Modifications of donepezil or hybrids with pharmacophores of donepezil in recent five years are summarized in this article. On the basis of case studies, our concerns and opinions about development of donepezil derivatives, designing of MTDLs, and perspectives for AD treatments are discussed in final part.
Collapse
|
11
|
Sittikul P, Songtawee N, Kongkathip N, Boonyalai N. In vitro and in silico studies of naphthoquinones and peptidomimetics toward Plasmodium falciparum plasmepsin V. Biochimie 2018; 152:159-173. [PMID: 30103899 DOI: 10.1016/j.biochi.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022]
Abstract
Plasmodium proteases play both regulatory and effector roles in essential biological processes in this important pathogen and have long been investigated as drug targets. Plasmepsin V from P. falciparum (PfPMV) is an essential protease that processes proteins for export into the host erythrocyte and is a focus of ongoing drug development efforts. In the present study, recombinant protein production, inhibition assays, binding studies as well as molecular docking and molecular dynamics simulation studies were used to investigate the mode of binding of a PEXEL-based peptidomimetic and naphthoquinone compounds to PfPMV. Consistent with our previous study, refolded PfPMVs were produced with functional characteristics similar to the soluble counterpart. Naphthoquinone compounds inhibited PfPMV activity by 50% at 50 μM but did not affect pepsin activity. The IC50 values of compounds 31 and 37 against PfPMV were 22.25 and 68.94 μM, respectively. Molecular dynamics simulations revealed that PEXEL peptide interacted with PfPMV active site residues via electrostatic interactions while naphthoquinone binding preferred van der Waal interactions. P1'-Ser of the PfEMP2 substrate formed an additional H-bond with Asp365 promoting the catalytic efficiency. Additionally, the effect of metal ions on the secondary structure of PfPMV was examined. Our results confirmed that Hg2+ ions reversibly induced the changes in secondary structure of the protein whereas Fe3+ ions induced irreversibly. No change was observed in the presence of Ca2+ ions. Overall, the results here suggested that naphthoquinone derivatives may represent another source of antimalarial inhibitors targeting aspartic proteases but further chemical modifications are required.
Collapse
Affiliation(s)
- Pichamon Sittikul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Ngampong Kongkathip
- Natural Product and Organic Synthesis Research Unit (NPOS), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nonlawat Boonyalai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
12
|
Chioua M, Serrano E, Dgachi Y, Martin H, Jun D, Janockova J, Sepsova V, Soukup O, Moraleda I, Chabchoub F, Ismaili L, Iriepa I, Marco-Contelles J. Synthesis, Biological Assessment and Molecular Modeling of Racemic QuinoPyranoTacrines
for Alzheimer's Disease Therapy. ChemistrySelect 2018. [DOI: 10.1002/slct.201702781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC); Juan de la Cierva, 3 28006-Madrid Spain
| | - Estefanía Serrano
- Laboratory of Medicinal Chemistry (IQOG, CSIC); Juan de la Cierva, 3 28006-Madrid Spain
- Department of Organic Chemistry and Inorganic Chemistry; School of Biology; Enviromental Sciences and Chemistry; University of Alcalá, Ctra. Barcelona; Km. 33.6 28871 Alcalá de Henares Spain
| | - Youssef Dgachi
- Laboratory of Applied Chemistry: Heterocycles; Lipids and Polymers; Faculty of Sciences of Sfax; University of Sfax. B. P 802. 3000 Sfax-; Tunisia
| | - Hélène Martin
- PEPITE EA4267; Laboratoire de Toxicologie Cellulaire; Univ. Bourgogne Franche-Comté, F-; 25000 Besançon France
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy; Faculty of Military Health Sciences; University of Defence; Hradec Kralove Czech Republic
| | - Jana Janockova
- Biomedical Research Center; University Hospital Hradec Kralove; Czech Republic
| | - Vendula Sepsova
- Department of Toxicology and Military Pharmacy; Faculty of Military Health Sciences; University of Defence; Hradec Kralove Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center; University Hospital Hradec Kralove; Czech Republic
| | - Ignacio Moraleda
- Department of Organic Chemistry and Inorganic Chemistry; School of Biology; Enviromental Sciences and Chemistry; University of Alcalá, Ctra. Barcelona; Km. 33.6 28871 Alcalá de Henares Spain
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles; Lipids and Polymers; Faculty of Sciences of Sfax; University of Sfax. B. P 802. 3000 Sfax-; Tunisia
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique; Neurosciences intégratives et cliniques EA 481; Univ. Franche-Comté; Univ. Bourgogne Franche-Comté; UFR SMP, 19, rue Ambroise Paré F-25000 Besançon France
| | - Isabel Iriepa
- Department of Organic Chemistry and Inorganic Chemistry; School of Biology; Enviromental Sciences and Chemistry; University of Alcalá, Ctra. Barcelona; Km. 33.6 28871 Alcalá de Henares Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC); Juan de la Cierva, 3 28006-Madrid Spain
| |
Collapse
|
13
|
Ashok P, Ilangovan A. Transition metal mediated selective C vs N arylation of 2-aminonaphthoquinone and its application toward the synthesis of benzocarbazoledione. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.10.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy. Molecules 2017; 22:molecules22081265. [PMID: 28788095 PMCID: PMC6152224 DOI: 10.3390/molecules22081265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/29/2022] Open
Abstract
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer’s disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors—THA and (−)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule.
Collapse
|
15
|
Kumar A, Srivastava G, Srivastava S, Verma S, Negi AS, Sharma A. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease. J Mol Model 2017; 23:239. [PMID: 28741112 DOI: 10.1007/s00894-017-3396-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
Collapse
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Gaurava Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Seema Verma
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Arvind S Negi
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India.
| |
Collapse
|
16
|
Costanzo P, Cariati L, Desiderio D, Sgammato R, Lamberti A, Arcone R, Salerno R, Nardi M, Masullo M, Oliverio M. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors. ACS Med Chem Lett 2016; 7:470-5. [PMID: 27190595 DOI: 10.1021/acsmedchemlett.5b00483] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 11/28/2022] Open
Abstract
An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.
Collapse
Affiliation(s)
- Paola Costanzo
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Luca Cariati
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Doriana Desiderio
- Dipartimento di Bioscienze e Territorio, Università del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Roberta Sgammato
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Anna Lamberti
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
| | - Rosaria Arcone
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Raffaele Salerno
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Monica Nardi
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 12 C, 87037 Arcavacata di Rende (CS), Italy
| | - Mariorosario Masullo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Manuela Oliverio
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| |
Collapse
|
17
|
Abstract
The carbon–carbon (C–C) bond forms the ‘backbone’ of nearly every organic molecule, and lies at the heart of the chemical sciences! Let us explore designing of carbon–carbon frameworks at ambient conditions.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis
- Department of Chemistry
- Visva-Bharati (a Central University)
- Santiniketan-731235
- India
| |
Collapse
|
18
|
Louvis ADR, Silva NAA, Semaan FS, da Silva FDC, Saramago G, de Souza LCSV, Ferreira BLA, Castro HC, Salles JP, Souza ALA, Faria RX, Ferreira VF, Martins DDL. Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones – green palladium-catalysed Suzuki cross coupling. NEW J CHEM 2016. [DOI: 10.1039/c6nj00872k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antifungal and trypanocidal aryl-1,4-naphthoquinones were prepared through an aqueous Suzuki protocol with reflux or microwave irradiation.
Collapse
|
19
|
Design, synthesis and biological evaluation of tasiamide B derivatives as BACE1 inhibitors. Bioorg Med Chem 2015; 23:1963-74. [PMID: 25842365 DOI: 10.1016/j.bmc.2015.03.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/05/2023]
Abstract
Nineteen new derivatives based on the structure of marine natural product tasiamide B were designed, synthesized, and evaluated for their inhibitory activity against BACE1, a potential therapeutic target for Alzheimer's disease. The hydrophobic substituents Val at P₃ position, Leu at P₁' position, Ala at P₂' position, and Phe at P₃' position were found to significantly affect the inhibition. Free carboxylic acid at C-terminus was also found to be important to the activity. In addition, the structure-activity relationships (SARs) were supported by molecular docking simulation.
Collapse
|
20
|
Wang D, Ge B, Ju A, Zhou Y, Xu C, Ding Y. Ir-catalyzed arylation, alkylation of quinones with boronic acids through C–C coupling. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Walker SE, Jordan-Hore JA, Johnson DG, Macgregor SA, Lee AL. Palladium-catalyzed direct C-H functionalization of benzoquinone. Angew Chem Int Ed Engl 2014; 53:13876-9. [PMID: 25302965 PMCID: PMC4502976 DOI: 10.1002/anie.201408054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 11/12/2022]
Abstract
A direct Pd-catalyzed C-H functionalization of benzoquinone (BQ) can be controlled to give either mono- or disubstituted BQ, including the installation of two different groups in a one-pot procedure. BQ can now be directly functionalized with aryl, heteroaryl, cycloalkyl, and cycloalkene groups and, moreover, the reaction is conducted in environmentally benign water or acetone as solvents.
Collapse
Affiliation(s)
- Sarah E Walker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (UK)
| | | | | | | | | |
Collapse
|
22
|
Walker SE, Jordan-Hore JA, Johnson DG, Macgregor SA, Lee AL. Palladium-Catalyzed Direct CH Functionalization of Benzoquinone. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Wang D, Ge B, Yang S, Miao H, Ding Y. Synthesis of aryl substituted quinones as β-secretase inhibitors: Ligand-free direct arylation of quinones with aryl halides. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214080295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wang D, Ge B, Li L, Shan J, Ding Y. Transition Metal-Free Direct C–H Functionalization of Quinones and Naphthoquinones with Diaryliodonium Salts: Synthesis of Aryl Naphthoquinones as β-Secretase Inhibitors. J Org Chem 2014; 79:8607-13. [DOI: 10.1021/jo501467v] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dawei Wang
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Bingyang Ge
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Liang Li
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jie Shan
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yuqiang Ding
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
25
|
Salomão K, De Santana NA, Molina MT, De Castro SL, Menna-Barreto RFS. Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol 2013; 13:196. [PMID: 24004461 PMCID: PMC3848626 DOI: 10.1186/1471-2180-13-196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Naphthoquinones (NQs) are privileged structures in medicinal chemistry due to the biological effects associated with the induction of oxidative stress. The present study evaluated the activities of sixteen NQs derivatives on Trypanosoma cruzi. RESULTS Fourteen NQs displayed higher activity against bloodstream trypomastigotes of T. cruzi than benznidazole. Further assays with NQ1, NQ8, NQ9 and NQ12 showed inhibition of the proliferation of axenic epimastigotes and intracelulluar amastigotes interiorized in macrophages and in heart muscle cells. NQ8 was the most active NQ against both proliferative forms of T. cruzi. In epimastigotes the four NQs induced mitochondrial swelling, vacuolization, and flagellar blebbing. The treatment with NQs also induced the appearance of large endoplasmic reticulum profiles surrounding different cellular structures and of myelin-like membranous contours, morphological characteristics of an autophagic process. At IC50 concentration, NQ8 totally disrupted the ΔΨm of about 20% of the parasites, suggesting the induction of a sub-population with metabolically inactive mitochondria. On the other hand, NQ1, NQ9 or NQ12 led only to a discrete decrease of TMRE + labeling at IC50 values. NQ8 led also to an increase in the percentage of parasites labeled with DHE, indicative of ROS production, possibly the cause of the observed mitochondrial swelling. The other three NQs behaved similarly to untreated controls. CONCLUSIONS NQ1, NQ8, NQ9 and NQ12 induce an autophagic phenotype in T. cruzi epimastigoted, as already observed with others NQs. The absence of oxidative stress in NQ1-, NQ9- and NQ12-treated parasites could be due to the existence of more than one mechanism of action involved in their trypanocidal activity, leaving ROS generation suppressed by the detoxification system of the parasite. The strong redox effect of NQ8 could be associated to the presence of the acetyl group in its structure facilitating quinone reduction, as previously demonstrated by electrochemical analysis. Further experiments using biochemical and molecular approaches are needed to better characterize ROS participation in the mechanism of action of these NQs.
Collapse
Affiliation(s)
- Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av, Brasil 4365, Manguinhos, Rio de Janeiro RJ 21040-900, Brazil.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Yang SG, Wang SW, Zhao M, Zhang R, Zhou WW, Li YN, Su YJ, Zhang H, Yu XL, Liu RT. A peptide binding to the β-site of APP improves spatial memory and attenuates Aβ burden in Alzheimer's disease transgenic mice. PLoS One 2012; 7:e48540. [PMID: 23133641 PMCID: PMC3486805 DOI: 10.1371/journal.pone.0048540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/26/2012] [Indexed: 12/15/2022] Open
Abstract
Amyloid precursor protein cleaving enzyme 1 (BACE1), an aspartyl protease, initiates processing of the amyloid precursor protein (APP) into β-amyloid (Aβ); the peptide likely contributes to development of Alzheimer’s disease (AD). BACE1 is an attractive therapeutic target for AD treatment, but it exhibits other physiological activities and has many other substrates besides APP. Thus, inhibition of BACE1 function may cause adverse side effects. Here, we present a peptide, S1, isolated from a peptide library that selectively inhibits BACE1 hydrolytic activity by binding to the β-proteolytic site on APP and Aβ N-terminal. The S1 peptide significantly reduced Aβ levels in vitro and in vivo and inhibited Aβ cytotoxicity in SH-SY5Y cells. When applied to APPswe/PS1dE9 double transgenic mice by intracerebroventricular injection, S1 significantly improved the spatial memory as determined by the Morris Water Maze, and also attenuated their Aβ burden. These results indicate that the dual-functional peptide S1 may have therapeutic potential for AD by both reducing Aβ generation and inhibiting Aβ cytotoxicity.
Collapse
Affiliation(s)
- Shi-gao Yang
- Tsinghua University School of Medicine, Haidian District, Beijing, China
| | - Shao-wei Wang
- Tsinghua University School of Medicine, Haidian District, Beijing, China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Min Zhao
- Tsinghua University School of Medicine, Haidian District, Beijing, China
| | - Ran Zhang
- Tsinghua University School of Medicine, Haidian District, Beijing, China
| | - Wei-wei Zhou
- Tsinghua University School of Medicine, Haidian District, Beijing, China
| | - Ya-nan Li
- Tsinghua University School of Medicine, Haidian District, Beijing, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Ya-jing Su
- Tsinghua University School of Medicine, Haidian District, Beijing, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - He Zhang
- Tsinghua University School of Medicine, Haidian District, Beijing, China
| | - Xiao-lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- * E-mail: (RTL); (XLY)
| | - Rui-tian Liu
- Tsinghua University School of Medicine, Haidian District, Beijing, China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- * E-mail: (RTL); (XLY)
| |
Collapse
|
28
|
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine. Bioorg Med Chem 2012; 20:6669-79. [PMID: 23062825 DOI: 10.1016/j.bmc.2012.09.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 11/24/2022]
Abstract
The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.
Collapse
|
29
|
Ravi Kumar P, Behera M, Raghavulu K, Jaya Shree A, Yennam S. Synthesis of novel isoxazole-benzoquinone hybrids via 1,3-dipolar cycloaddition reaction as key step. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Rao MLN, Giri S. Pd-catalyzed threefold arylations of mono, di and tetra-bromoquinones using triarylbismuth reagents. RSC Adv 2012. [DOI: 10.1039/c2ra22058j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
31
|
Bolognesi ML, Chiriano G, Bartolini M, Mancini F, Bottegoni G, Maestri V, Czvitkovich S, Windisch M, Cavalli A, Minarini A, Rosini M, Tumiatti V, Andrisano V, Melchiorre C. Synthesis of Monomeric Derivatives To Probe Memoquin’s Bivalent Interactions. J Med Chem 2011; 54:8299-304. [DOI: 10.1021/jm200691d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Laura Bolognesi
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - GianPaolo Chiriano
- Statistical and Biological Physics
Sector, SISSA-ISAS, Via Bonomea 265, 34136
Trieste, Italy
| | - Manuela Bartolini
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Francesca Mancini
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Giovanni Bottegoni
- Department
of Drug Discovery and
Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Valentina Maestri
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | | | | | - Andrea Cavalli
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
- Department
of Drug Discovery and
Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Anna Minarini
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Michela Rosini
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Vincenzo Tumiatti
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Vincenza Andrisano
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Carlo Melchiorre
- Department of Pharmaceutical
Sciences, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| |
Collapse
|