1
|
Oh M, Shen M, Liu R, Stavitskaya L, Shen J. Machine Learned Classification of Ligand Intrinsic Activities at Human μ-Opioid Receptor. ACS Chem Neurosci 2024; 15:2842-2852. [PMID: 38990780 DOI: 10.1021/acschemneuro.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here, we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on the SMILES strings and two-dimensional molecular descriptors. We first manually curated a database of 983 small molecules with measured Emax values at the human μOR. Analysis of the chemical space allowed identification of dominant scaffolds and structurally similar agonists and antagonists. Decision tree models and directed message passing neural networks (MPNNs) were then trained to classify agonistic and antagonistic ligands. The hold-out test AUCs (areas under the receiver operator curves) of the extra-tree (ET) and MPNN models are 91.5 ± 3.9% and 91.8 ± 4.4%, respectively. To overcome the challenge of a small data set, a student-teacher learning method called tritraining with disagreement was tested using an unlabeled data set comprised of 15,816 ligands of human, mouse, and rat μOR, κOR, and δOR. We found that the tritraining scheme was able to increase the hold-out AUC of MPNN models to as high as 95.7%. Our work demonstrates the feasibility of developing ML models to accurately predict the intrinsic activities of μOR ligands, even with limited data. We envisage potential applications of these models in evaluating uncharacterized substances for public safety risks and discovering new therapeutic agents to counteract opioid overdoses.
Collapse
Affiliation(s)
- Myongin Oh
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maximilian Shen
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Lidiya Stavitskaya
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Oh M, Shen M, Liu R, Stavitskaya L, Shen J. Machine Learned Classification of Ligand Intrinsic Activities at Human μ-Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588485. [PMID: 38645122 PMCID: PMC11030315 DOI: 10.1101/2024.04.07.588485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on the SMILE strings and two-dimensional molecular descriptors. We first manually curated a database of 983 small molecules with measured E max values at the human μOR. Analysis of the chemical space allowed identification of dominant scaffolds and structurally similar agonists and antagonists. Decision tree models and directed message passing neural networks (MPNNs) were then trained to classify agonistic and antagonistic ligands. The hold-out test AUCs (areas under the receiver operator curves) of the extra-tree (ET) and MPNN models are 91.5±3.9% and 91.8± 4.4%, respectively. To overcome the challenge of small dataset, a student-teacher learning method called tri-training with disagreement was tested using an unlabeled dataset comprised of 15,816 ligands of human, mouse, or rat μOR, κOR, or δOR. We found that the tri-training scheme was able to increase the hold-out AUC of MPNN to as high as 95.7%. Our work demonstrates the feasibility of developing ML models to accurately predict the intrinsic activities of μOR ligands, even with limited data. We envisage potential applications of these models in evaluating uncharacterized substances for public safety risks and discovering new therapeutic agents to counteract opioid overdoses.
Collapse
Affiliation(s)
- Myongin Oh
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Maximilian Shen
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Lidiya Stavitskaya
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
3
|
St. Onge C, Pagare PP, Zheng Y, Arriaga M, Stevens DL, Mendez RE, Poklis JL, Halquist MS, Selley DE, Dewey WL, Banks ML, Zhang Y. Systematic Structure-Activity Relationship Study of Nalfurafine Analogues toward Development of Potentially Nonaddictive Pain Management Treatments. J Med Chem 2024; 67:9552-9574. [PMID: 38814086 PMCID: PMC11181328 DOI: 10.1021/acs.jmedchem.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Despite the availability of numerous pain medications, the current array of Food and Drug Administration-approved options falls short in adequately addressing pain states for numerous patients and consequently worsens the opioid crisis. Thus, it is imperative for basic research to develop novel and nonaddictive pain medications. Toward addressing this clinical goal, nalfurafine (NLF) was chosen as a lead and its structure-activity relationship (SAR) systematically studied through design, syntheses, and in vivo characterization of 24 analogues. Two analogues, 21 and 23, showed longer durations of action than NLF in a warm-water tail immersion assay, produced in vivo effects primarily mediated by KOR and DOR, penetrated the blood-brain barrier, and did not function as reinforcers. Additionally, 21 produced fewer sedative effects than NLF. Taken together, these results aid the understanding of NLF SAR and provide insights for future endeavors in developing novel nonaddictive therapeutics to treat pain.
Collapse
Affiliation(s)
- Celsey
M. St. Onge
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Piyusha P. Pagare
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Yi Zheng
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Michelle Arriaga
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Rolando E. Mendez
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Justin L. Poklis
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Matthew S. Halquist
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
- Institute
for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia 23298, United States
| |
Collapse
|
4
|
Ma H, Pagare PP, Li M, Neel LT, Mendez RE, Gillespie JC, Stevens DL, Dewey WL, Selley DE, Zhang Y. Structural Alterations of the "Address" Moiety of NAN Leading to the Discovery of a Novel Opioid Receptor Modulator with Reduced hERG Toxicity. J Med Chem 2023; 66:577-595. [PMID: 36538027 PMCID: PMC10546487 DOI: 10.1021/acs.jmedchem.2c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The search for selective opioid ligands with desired pharmacological potency and improved safety profile has always been an area of interest. Our previous effort yielded a potent opioid modulator, NAN, a 6α-N-7'-indolyl-substituted naltrexamine derivative, which exhibited promising pharmacological activities both in vitro and in vivo. However, significant human ether-a-go-go-related gene (hERG) liability limited its further development. Therefore, a systematic structural modification on NAN was conducted in order to alleviate hERG toxicity while preserving pharmacological properties, which led to the discovery of 2'-methylindolyl derivative compound 21. Compared to NAN, compound 21 manifested overall improved pharmacological profiles. Follow-up hERG channel inhibition evaluation revealed a seven-fold decreased potency of compound 21 compared to NAN. Furthermore, several fundamental drug-like property evaluations suggested a reasonable ADME profile of 21. Collectively, compound 21 appeared to be a promising opioid modulator for further development as a novel therapeutic agent toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Logan T Neel
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia23298-0059, United States
| |
Collapse
|
5
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Ma H, Wang H, Gillespie JC, Mendez RE, Selley DE, Zhang Y. Exploring naltrexamine derivatives featuring azaindole moiety via nitrogen-walk approach to investigate their in vitro pharmacological profiles at the mu opioid receptor. Bioorg Med Chem Lett 2021; 41:127953. [PMID: 33766769 DOI: 10.1016/j.bmcl.2021.127953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/19/2022]
Abstract
In the present work, we reported the application of a nitrogen-walk approach on developing a series of novel opioid ligands containing an azaindole moiety at the C6-position of the epoxymorphinan skeleton. In vitro study results showed that introducing a nitrogen atom around the indole moiety not only retained excellent binding affinity, but also led to significant functional switch at the mu opioid receptor (MOR). Further computational investigations provided corroborative evidence and plausible explanations of the results of the in vitro studies. Overall, our current work implemented a series of novel MOR ligands with high binding affinity and considerably low efficacy, which may shed light on rational design of low efficacy MOR ligands for opioid use disorder therapeutics.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12(th) Street, Richmond, VA 23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12(th) Street, Richmond, VA 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12(th) Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
8
|
Huang B, Gunta R, Wang H, Li M, Cao D, Mendez RE, Gillespie JC, Chen C, Huang LHM, Liu-Chen LY, Selley DE, Zhang Y. Verifying the role of 3-hydroxy of 17-cyclopropylmethyl-4,5α-epoxy-3,14β-dihydroxy-6β-[(4'-pyridyl) carboxamido]morphinan derivatives via their binding affinity and selectivity profiles on opioid receptors. Bioorg Chem 2021; 109:104702. [PMID: 33631465 DOI: 10.1016/j.bioorg.2021.104702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
In the present study, the role of 3-hydroxy group of a series of epoxymorphinan derivatives in their binding affinity and selectivity profiles toward the opioid receptors (ORs) has been investigated. It was found that the 3-hydroxy group was crucial for the binding affinity of these derivatives for all three ORs due to the fact that all the analogues 1a-e exhibited significantly higher binding affinities compared to their counterpart 3-dehydroxy ones 6a-e. Meanwhile most compounds carrying the 3-hydroxy group possessed similar selectivity profiles for the kappa opioid receptor over the mu opioid receptor as their corresponding 3-dehydroxy derivatives. [35S]-GTPγS functional assay results indicated that the 3-hydroxy group of these epoxymorphinan derivatives was important for maintaining their potency on the ORs with various effects. Further molecular modeling studies helped comprehend the remarkably different binding affinity and functional profiles between compound 1c (NCP) and its 3-dehydroxy analogue 6c.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Rama Gunta
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States
| | - Danni Cao
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States; Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Lan-Hsuan M Huang
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB 851, Philadelphia, PA 19140, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, United States.
| |
Collapse
|
9
|
Ma H, Obeng S, Wang H, Zheng Y, Li M, Jali AM, Stevens DL, Dewey WL, Selley DE, Zhang Y. Application of Bivalent Bioisostere Concept on Design and Discovery of Potent Opioid Receptor Modulators. J Med Chem 2019; 62:11399-11415. [PMID: 31782922 DOI: 10.1021/acs.jmedchem.9b01767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we described the structural modification of previously identified μ opioid receptor (MOR) antagonist NAN, a 6α-N-7'-indolyl substituted naltrexamine derivative, and its 6β-N-2'-indolyl substituted analogue INTA by adopting the concept of "bivalent bioisostere". Three newly prepared opioid ligands, 25 (NBF), 31, and 38, were identified as potent MOR antagonists both in vitro and in vivo. Moreover, these three compounds significantly antagonized DAMGO-induced intracellular calcium flux and displayed varying degrees of inhibition on cAMP production. Furthermore, NBF produced much less significant withdrawal effects than naloxone in morphine-pelleted mice. Molecular modeling studies revealed that these bivalent bioisosteres may adopt similar binding modes in the MOR and the "address" portions of them may have negative or positive allosteric modulation effects on the function of their "message" portions compared with NAN and INTA. Collectively, our successful application of the "bivalent bioisostere concept" identified a promising lead to develop novel therapeutic agents toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - David L Stevens
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - William L Dewey
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology , Virginia Commonwealth University , 410 North 12th Street , Richmond , Virginia 23298 , United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Virginia Commonwealth University , 800 E Leigh Street , Richmond , Virginia 23298 , United States
| |
Collapse
|
10
|
Binding mode analyses of NAP derivatives as mu opioid receptor selective ligands through docking studies and molecular dynamics simulation. Bioorg Med Chem 2017; 25:2463-2471. [PMID: 28302509 DOI: 10.1016/j.bmc.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Mu opioid receptor selective antagonists are highly desirable because of their utility as pharmacological probes for receptor characterization and functional studies. Furthermore, the mu opioid receptors act as an important target in drug abuse and addiction treatment. Previously, we reported NAP as a novel lead compound with high selectivity and affinity towards the mu opioid receptor. Based on NAP, we have synthesized its derivatives and further characterized their binding affinities and selectivity towards the receptor. NMP and NGP were identified as the two most selective MOR ligands among NAP derivatives. In the present study, molecular modeling methods were applied to assess the dual binding modes of NAP derivatives, particularly on NMP and NGP, in three opioid receptors, in order to analyze the effects of structural modifications on the pyridyl ring of NAP on the binding affinity and selectivity. The results indicated that the steric hindrance, electrostatic, and hydrophobic effects caused by the substituents on the pyridyl ring of NAP contributed complimentarily on the binding affinity and selectivity of NAP derivatives to three opioid receptors. Analyses of these contributions provided insights on future design of more potent and selective mu opioid receptor ligands.
Collapse
|
11
|
Yuan Y, Zaidi SA, Stevens DL, Scoggins KL, Mosier PD, Kellogg GE, Dewey WL, Selley DE, Zhang Y. Design, syntheses, and pharmacological characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3'-carboxamido)morphinan analogues as opioid receptor ligands. Bioorg Med Chem 2015; 23:1701-15. [PMID: 25783191 PMCID: PMC4380750 DOI: 10.1016/j.bmc.2015.02.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
A series of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3'-carboxamido)morphinan (NAQ) analogues were synthesized and pharmacologically characterized to study their structure-activity relationship at the mu opioid receptor (MOR). The competition binding assay showed two-atom spacer and aromatic side chain were optimal for MOR selectivity. Meanwhile, substitutions at the 1'- and/or 4'-position of the isoquinoline ring retained or improved MOR selectivity over the kappa opioid receptor while still possessing above 20-fold MOR selectivity over the delta opioid receptor. In contrast, substitutions at the 6'- and/or 7'-position of the isoquinoline ring reduced MOR selectivity as well as MOR efficacy. Among this series of ligands, compound 11 acted as an antagonist when challenged with morphine in warm-water tail immersion assay and produced less significant withdrawal symptoms compared to naltrexone in morphine-pelleted mice. Compound 11 also antagonized the intracellular Ca(2+) increase induced by DAMGO. Molecular dynamics simulation studies of 11 in three opioid receptors indicated orientation of the 6'-nitro group varied significantly in the different 'address' domains of the receptors and played a crucial role in the observed binding affinities and selectivity. Collectively, the current findings provide valuable insights for future development of NAQ-based MOR selective ligands.
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| | - Saheem A Zaidi
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Krista L Scoggins
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Novel 6β-acylaminomorphinans with analgesic activity. Eur J Med Chem 2013; 69:786-9. [PMID: 24103580 DOI: 10.1016/j.ejmech.2013.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/03/2013] [Accepted: 09/15/2013] [Indexed: 12/25/2022]
Abstract
Aminomorphinans are a relatively young class of opioid drugs among which substances of high in vitro efficacy and favorable in vivo action are found. We report the synthesis and pharmacological evaluation of novel 6β-acylaminomorphinans. 6β-Morphinamine and 6β-codeinamine were stereoselectively synthesized by Mitsunobu reaction. The aminomorphinans were subsequently acylated with diversely substituted cinnamic acids. In vitro binding studies on cinnamoyl morphinamines showed moderate affinity for all opiate receptors with some selectivity for mu opioid receptors, while cinnamoyl codeinamines only showed affinity for mu opioid receptors. In vivo analgesia studies showed significant analgesic activity of 6β-cinnamoylmorphinamine mediated by mu and delta receptors. The lead compound was found to be roughly equipotent to morphine (ED₅₀ 3.13 ± 1.09 mg/kg) but devoid of the dangerous side-effect respiratory depression, a major issue associated with traditional opioid therapy.
Collapse
|
13
|
Yaremenko AG, Volochnyuk DM, Shelyakin VV, Grygorenko OO. Tetrahydropyrido[d]pyridazinones—promising scaffolds for drug discovery. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Zhang Y, Elbegdorj O, Yuan Y, Beletskaya IO, Selley DE. Opioid receptor selectivity profile change via isosterism for 14-O-substituted naltrexone derivatives. Bioorg Med Chem Lett 2013; 23:3719-22. [PMID: 23721804 DOI: 10.1016/j.bmcl.2013.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022]
Abstract
Isosterism is commonly used in drug discovery and development to address stability, selectivity, toxicity, pharmacokinetics, and efficacy issues. A series of 14-O-substituted naltrexone derivatives were identified as potent mu opioid receptor (MOR) antagonists with improved selectivity over the kappa opioid receptor (KOR) and the delta opioid receptor (DOR), compared to naltrexone. Since esters are not metabolically very stable under typical physiological conditions, their corresponding amide analogs were thus synthesized and biologically evaluated. Unlike their isosteres, most of these novel ligands seem to be dually selective for the MOR and the KOR over the DOR. The restricted flexibility of the amide bond linkage might be responsible for their altered selectivity profile. However, the majority of the 14-N-substituted naltrexone derivatives produced marginal or no MOR stimulation in the (35)S-GTP[γS] assay, which resembled their ester analogs. The current study thus indicated that the 14-substituted naltrexone isosteres are not bioisosteres since they have distinctive pharmacological profile with the regard to their opioid receptor binding affinity and selectivity.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Yuan Y, Elbegdorj O, Chen J, Akubathini SK, Zhang F, Stevens DL, Beletskaya IO, Scoggins KL, Zhang Z, Gerk PM, Selley DE, Akbarali HI, Dewey WL, Zhang Y. Design, synthesis, and biological evaluation of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan derivatives as peripheral selective μ opioid receptor Agents. J Med Chem 2012; 55:10118-29. [PMID: 23116124 DOI: 10.1021/jm301247n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peripheral selective μ opioid receptor (MOR) antagonists could alleviate the symptoms of opioid-induced constipation (OIC) without compromising the analgesic effect of opioids. However, a variety of adverse effects were associated with them, partially due to their relatively low MOR selectivity. NAP, a 6β-N-4'-pyridyl substituted naltrexamine derivative, was identified previously as a potent and highly selective MOR antagonist mainly acting within the peripheral nervous system. The noticeable diarrhea associated with it prompted the design and synthesis of its analogues in order to study its structure-activity relationship. Among them, compound 8 showed improved pharmacological profiles compared to the original lead, acting mainly at peripheral while increasing the intestinal motility in morphine-pelleted mice (ED(50) = 0.03 mg/kg). The slight decrease of the ED(50) compared to the original lead was well compensated by the unobserved adverse effect. Hence, this compound seems to be a more promising lead to develop novel therapeutic agents toward OIC.
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University , 800 East Leigh Street, Richmond, Virginia 23298, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Majumdar S, Subrath J, Le Rouzic V, Polikar L, Burgman M, Nagakura K, Ocampo J, Haselton N, Pasternak AR, Grinnell S, Pan YX, Pasternak GW. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated μ opioid receptor (MOR-1) splice variants. J Med Chem 2012; 55:6352-62. [PMID: 22734622 DOI: 10.1021/jm300305c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogues were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3'or 4' position of the phenyl ring, and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower δ opioid receptor affinity than its naltrexamine analogue, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence, and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity.
Collapse
Affiliation(s)
- Susruta Majumdar
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yuan Y, Stevens DL, Braithwaite A, Scoggins KL, Bilsky EJ, Akbarali HI, Dewey WL, Zhang Y. 6β-N-heterocyclic substituted naltrexamine derivative NAP as a potential lead to develop peripheral mu opioid receptor selective antagonists. Bioorg Med Chem Lett 2012; 22:4731-4. [PMID: 22683223 DOI: 10.1016/j.bmcl.2012.05.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
A 6β-N-heterocyclic substituted naltrexamine derivative, NAP, was proposed as a peripheral mu opioid receptor (MOR) selective antagonist based on the in vitro and in vivo pharmacological and pharmacokinetic studies. To further validate this notion, several functional assays were carried out to fully characterize this compound. In the charcoal gavage and intestinal motility assay in morphine-pelleted mice, when administered 0.3 mg/kg or higher doses up to 3 mg/kg subcutaneously, NAP significantly increased the intestinal motility compared to the saline treatment. The comparative opioid withdrawal precipitation study and the lower locomotor assay demonstrated that NAP showed only marginal intrinsic effect in the central nervous system either given subcutaneously or intravenously: no jumps were witnessed for the tested animals even given up to a dose of 50 mg/kg, while similar noticeable wet-dog shakes only occurred at the dose 50 times of those for naloxone or naltrexone, and significant reduction of the hyper-locomotion only happened at the dose as high as 32 mg/kg. Collectively, these results suggested that NAP may serve as a novel lead to develop peripheral MOR selective antagonist which might possess therapeutic potential for opioid-induced bowel dysfunction (OBD), such as opioid-induced constipation (OIC).
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, PO Box 980540, Richmond, VA 23298, United States
| | | | | | | | | | | | | | | |
Collapse
|