1
|
Orahoske CM, Afrin M, Li Y, Hanna J, Marbury M, Li B, Su B. Identification of Prazosin as a Potential Flagellum Attachment Zone 1(FAZ1) Inhibitor for the Treatment of Human African Trypanosomiasis. ACS Infect Dis 2022; 8:1711-1726. [PMID: 35894227 DOI: 10.1021/acsinfecdis.2c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human African trypanosomiasis (HAT) remains a health threat to sub-Saharan Africa. The current treatments suffer from drug resistance and life-threatening side effects, making drug discovery for HAT still important. A high-throughput screening of the library of pharmaceutically active compounds identified prazosin, an α-adrenoceptor antagonist, that showed selective activity toward Trypanosoma brucei brucei. Furthermore, a series of prazosin analogues were examined, and overall, the new analogues had improved activity and selectivity. To elucidate the binding partner, a biotin-conjugated probe was synthesized, and a protein pulldown assay combined with a proteomic analysis identified the flagellum attachment zone 1 (FAZ1) filament as an interacting partner. Additionally, prazosin treatment resulted in dysfunction of the flagellum of trypanosome cells, which is indicative of a FAZ1 irregularity. We also examined the drug distribution by utilizing immunofluorescence with a designed fluorescent analogue that showed partial colocalization with FAZ1. With the activity of the prazosin analogues, a structure-activity relationship (SAR) was summarized for future lead optimization. Our findings provide a new group of FAZ1 inhibitors as novel antitrypanosomal agents.
Collapse
Affiliation(s)
- Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Marjia Afrin
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Jovana Hanna
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Myah Marbury
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Bibo Li
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| |
Collapse
|
2
|
Catarro M, Serrano JL, Ramos SS, Silvestre S, Almeida P. Nimesulide analogues: From anti-inflammatory to antitumor agents. Bioorg Chem 2019; 88:102966. [PMID: 31075744 DOI: 10.1016/j.bioorg.2019.102966] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Nimesulide is a nonsteroidal anti-inflammatory drug possessing analgesic and antipyretic properties. This drug is considered a selective cyclooxygenase-2 (COX-2) inhibitor and, more recently, has been associated to antitumor activity. Thus, numerous works have been developed to modify the nimesulide skeleton aiming to develop new and more potent and selective COX-2 inhibitors as well as potential anticancer agents. This review intends to provide an overview on analogues of nimesulide, including the general synthetic approaches used for their preparation and structural diversification and their main anti-inflammatory and/or antitumor properties.
Collapse
Affiliation(s)
- Mafalda Catarro
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João L Serrano
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana S Ramos
- FibEnTech - UBI, Materiais Fibrosos e Tecnologias Ambientais, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-517 Coimbra, Portugal
| | - Paulo Almeida
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
3
|
Tian DM, Qiao J, Bao YZ, Liu J, Zhang XK, Sun XL, Zhang YW, Yao XS, Tang JS. Design and synthesis of biotinylated cardiac glycosides for probing Nur77 protein inducting pathway. Bioorg Med Chem Lett 2019; 29:707-712. [PMID: 30670347 DOI: 10.1016/j.bmcl.2019.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
The orphan nuclear receptor Nur77 (also known as TR3 or nerve growth factor-induced clone B NGFI-B) functions as a nuclear transcription factor in the regulation of target gene expression and plays a critical role in the regulation of differentiation, proliferation, apoptosis, and survival of many different cell types. Recent studies demonstrate that Nur77 also involves many important physiological and pathological processes including cancer, inflammation and immunity, cardiovascular diseases, and bone diseases. Our previous studies showed that cardiac glycosides could induce the expression of Nur77 protein and its translocation from the nucleus to the cytoplasm and subsequent targeting to mitochondria, leading to apoptosis of cancer cells. In order to probe the Nur77 protein inducting pathway, we designed and synthesized a series of novel biotinylated cardiac glycosides from β-Antiarin and α-Antiarin, two typical cardiac glycosides from the plant of Antiaris toxicaria. The induction of Nur77 protein expression of these biotinylated cardiac glycosides and their inhibitory effects on NIH-H460 cancer cell proliferation were evaluated. Results displayed that some biotinylated cardiac glycosides could significantly induce the expression of Nur77 protein comparable with their parent compounds β-Antiarin and α-Antiarin. Also, their streptavidin binding activities were evaluated. Among them, biotinylated cardiac glycosides P4b and P5a exhibited significant effect on the induction of Nur77 expression along with high binding capacity with streptavidin, suggesting that they can be used as probes for probing Nur77 protein inducting pathway.
Collapse
Affiliation(s)
- Dan-Mei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia Qiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yu-Zhou Bao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, United States
| | - You-Wei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Jin-Shan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
4
|
Catarro M, Serrano J, Cavalheiro E, Ramos S, Santos AO, Silvestre S, Almeida P. Novel 4-acetamide-2-alkylthio- N -acetanilides resembling nimesulide: Synthesis, cell viability evaluation and in silico studies. Bioorg Med Chem 2017; 25:4304-4313. [DOI: 10.1016/j.bmc.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
|
5
|
Ramos SS, Almeida SS, Leite PM, Boto RE, Silvestre S, Almeida P. VT-NMR and cytotoxic evaluation of some new ortho-(alkylchalcogen)acetanilides. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Plażuk D, Zakrzewski J, Salmain M, Błauż A, Rychlik B, Strzelczyk P, Bujacz A, Bujacz G. Ferrocene–Biotin Conjugates Targeting Cancer Cells: Synthesis, Interaction with Avidin, Cytotoxic Properties and the Crystal Structure of the Complex of Avidin with a Biotin–Linker–Ferrocene Conjugate. Organometallics 2013. [DOI: 10.1021/om4003126] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403
Łódź, Poland
| | - Janusz Zakrzewski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403
Łódź, Poland
| | - Michèle Salmain
- Chimie ParisTech, Laboratoire Charles
Friedel, and CNRS, UMR 7223, 11 rue Pierre et Marie Curie, F-75005
Paris, France
| | - Andrzej Błauż
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237
Łódź, Poland
| | - Błażej Rychlik
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237
Łódź, Poland
| | - Paweł Strzelczyk
- Institute of Technical Biochemistry, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Grzegorz Bujacz
- Institute of Technical Biochemistry, Łódź University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| |
Collapse
|
7
|
Zhong B, Chennamaneni S, Lama R, Yi X, Geldenhuys WJ, Pink JJ, Dowlati A, Xu Y, Zhou A, Su B. Synthesis and anticancer mechanism investigation of dual Hsp27 and tubulin inhibitors. J Med Chem 2013; 56:5306-20. [PMID: 23767669 DOI: 10.1021/jm4004736] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University , 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nimesulide Based Novel Glycolamide Esters: Their Design, Synthesis, and Pharmacological Evaluation. J CHEM-NY 2013. [DOI: 10.1155/2013/816769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The nimesulide based novel glycolamide esters were designed and synthesized for the first timeviaa three-step method starting from nimesulide. Structures of the synthesized compounds were confirmed by spectroscopic analysis. All the synthesized compounds were examined for their cytotoxic effectsin vitro,some of which showed significant cytotoxic activities against HCT-15 human colon cancer cell line.
Collapse
|
9
|
Yi X, Zhong B, Smith KM, Geldenhuys WJ, Feng Y, Pink JJ, Dowlati A, Xu Y, Zhou A, Su B. Identification of a Class of Novel Tubulin Inhibitors. J Med Chem 2012; 55:3425-35. [DOI: 10.1021/jm300100d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Werner J. Geldenhuys
- Department
of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272, United States
| | | | | | | | | | | | | |
Collapse
|