1
|
Li M, Zhang Z, Ma N, Zhao J, Wu H, Liu Q, Zhang G. Anion Cascade Reactions. Part I: Synthesis of 3-Isoquinuclidones from a Nazarov-like Reagent. Org Lett 2023; 25:6840-6845. [PMID: 37681678 DOI: 10.1021/acs.orglett.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A simple and atom-economical one-step protocol is described for the synthesis of biologically valuable 3-isoquinuclidones. The method proceeds from the simple starting materials, α-acyl N-arylcinnamamides, and can be performed under mild conditions in the presence of tBuOK. The key steps of this process are the double Michael addition reaction of a Nazarov-like reagent and the subsequent intramolecular hemiamination. These flexible intermolecular reactions could be performed on a gram scale.
Collapse
Affiliation(s)
- Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Jie Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, and School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Udompholkul P, Garza-Granados A, Alboreggia G, Baggio C, McGuire J, Pegan SD, Pellecchia M. Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist. J Med Chem 2023. [PMID: 37262387 DOI: 10.1021/acs.jmedchem.3c00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have recently reported on the use of aryl-fluorosulfates in designing water- and plasma-stable agents that covalently target Lys, Tyr, or His residues in the BIR3 domain of the inhibitor of the apoptosis protein (IAP) family. Here, we report further structural, cellular, and pharmacological characterizations of this agent, including the high-resolution structure of the complex between the Lys-covalent agent and its target, the BIR3 domain of X-linked IAP (XIAP). We also compared the cellular efficacy of the agent in two-dimensional (2D) and three-dimensional (3D) cell cultures, side by side with the clinical candidate reversible IAP inhibitor LCL161. Finally, in vivo pharmacokinetic studies indicated that the agent was long-lived and orally bioavailable. Collectively our data further corroborate that aryl-fluorosulfates, when incorporated correctly in a ligand, can result in Lys-covalent agents with pharmacodynamic and pharmacokinetic properties that warrant their use in the design of pharmacological probes or even therapeutics.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ana Garza-Granados
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jack McGuire
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Scott D Pegan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
3
|
Li F, Du Y, Liang Y, Wei Y, Zheng Y, Yu H. Redesigning an ( R)-Selective Transaminase for the Efficient Synthesis of Pharmaceutical N-Heterocyclic Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fulong Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Yukun Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
4
|
Negi A, Kesari KK, Voisin-Chiret AS. Estrogen Receptor-α Targeting: PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharmaceutics 2022; 14:pharmaceutics14112523. [PMID: 36432713 PMCID: PMC9699327 DOI: 10.3390/pharmaceutics14112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Targeting selective estrogen subtype receptors through typical medicinal chemistry approaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules are developed in order to inhibit the protein of interest (POI), and their popularity is based on their virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar range binding affinity and continuous dosage after a time interval for sustained inhibition of POI. These shortcomings were addressed by event-driven pharmacology-based approaches, which degrade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras), which has become one of the highly successful strategies of event-driven pharmacology (pharmacology that does the degradation of POI and diminishes its functions). The selective targeting of estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists. Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance commonly developed against these therapies, which led to selective estrogen receptor degrader (SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on the mechanism of degradation of ER-α, various types of strategies of developed.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University UNICAEN, 14000 Caen, France
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| |
Collapse
|
5
|
Lee J, Lee Y, Jung YM, Park JH, Yoo HS, Park J. Discovery of E3 Ligase Ligands for Target Protein Degradation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196515. [PMID: 36235052 PMCID: PMC9573645 DOI: 10.3390/molecules27196515] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Target protein degradation has emerged as a promising strategy for the discovery of novel therapeutics during the last decade. Proteolysis-targeting chimera (PROTAC) harnesses a cellular ubiquitin-dependent proteolysis system for the efficient degradation of a protein of interest. PROTAC consists of a target protein ligand and an E3 ligase ligand so that it enables the target protein degradation owing to the induced proximity with ubiquitin ligases. Although a great number of PROTACs has been developed so far using previously reported ligands of proteins for their degradation, E3 ligase ligands have been mostly limited to either CRBN or VHL ligands. Those PROTACs showed their limitation due to the cell type specific expression of E3 ligases and recently reported resistance toward PROTACs with CRBN ligands or VHL ligands. To overcome these hurdles, the discovery of various E3 ligase ligands has been spotlighted to improve the current PROTAC technology. This review focuses on currently reported E3 ligase ligands and their application in the development of PROTACs.
Collapse
Affiliation(s)
- Jaeseok Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Youngjun Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Ju Hyun Park
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyuk Sang Yoo
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-8482
| |
Collapse
|
6
|
Soor HS, Diaz DB, Tsui KY, Calvopiña K, Bielinski M, Tantillo DJ, Schofield CJ, Yudin AK. Synthesis and Application of Constrained Amidoboronic Acids Using Amphoteric Boron-Containing Building Blocks. J Org Chem 2021; 87:94-102. [PMID: 34898194 DOI: 10.1021/acs.joc.1c02015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amidoboronic acid-containing peptidomimetics are an important class of scaffolds in chemistry and drug discovery. Despite increasing interest in boron-based enzyme inhibitors, constrained amidoboronic acids have received little attention due to the limited options available for their synthesis. We describe a new methodology to prepare both α- and β-amidoboronic acids that impose restrictions on backbone angles. Lewis acid-promoted Boyer-Schmidt-Aube lactam ring expansions using an azidoalkylboronate enabled generation of constrained α-amidoboronic acid derivatives, whereas assembly of the homologous β-amidoboronic acids was achieved through a novel boronic acid-mediated lactamization process stemming from an α-boryl aldehyde. The results of quantum chemical calculations suggest carboxylate-boron coordination to be rate-limiting for small ring sizes, whereas the tetrahedral intermediate formation is rate limiting in the case of larger rings. As part of this study, an application of β-amidoboronic acid derivatives as novel VIM-2 metallo-β-lactamase inhibitors has been demonstrated.
Collapse
Affiliation(s)
- Harjeet S Soor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Diego B Diaz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ka Yi Tsui
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Karina Calvopiña
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marcin Bielinski
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
Gambini L, Udompholkul P, Salem AF, Baggio C, Pellecchia M. Stability and Cell Permeability of Sulfonyl Fluorides in the Design of Lys-Covalent Antagonists of Protein-Protein Interactions. ChemMedChem 2020; 15:2176-2184. [PMID: 32790900 PMCID: PMC7722097 DOI: 10.1002/cmdc.202000355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Recently we reported on aryl-fluorosulfates as possible stable and effective electrophiles for the design of lysine covalent, cell permeable antagonists of protein-protein interactions (PPIs). Here we revisit the use of aryl-sulfonyl fluorides as Lys-targeting moieties, incorporating these electrophiles in XIAP (X-linked inhibitor of apoptosis protein) targeting agents. We evaluated stability in buffer and reactivity with Lys311 of XIAP of various aryl-sulfonyl fluorides using biochemical and biophysical approaches, including displacement assays, mass spectrometry, SDS gel electrophoresis, and denaturation thermal shift measurements. To assess whether these modified electrophilic "warheads" can also react with Tyr, we repeated these evaluations with a Lys311Tyr XIAP mutant. Using a direct cellular assay, we could demonstrate that selected agents are cell permeable and interact covalently with their intended target in cell. These results suggest that certain substituted aryl-sulfonyl fluorides can be useful Lys- or Tyr-targeting electrophiles for the design of covalent pharmacological tools or even future therapeutics targeting protein-protein interactions.
Collapse
Affiliation(s)
- Luca Gambini
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Parima Udompholkul
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Ahmed F. Salem
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Carlo Baggio
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Maurizio Pellecchia
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| |
Collapse
|
8
|
Baggio C, Udompholkul P, Gambini L, Salem AF, Jossart J, Perry JJP, Pellecchia M. Aryl-fluorosulfate-based Lysine Covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with Cellular Efficacy. J Med Chem 2019; 62:9188-9200. [PMID: 31550155 DOI: 10.1021/acs.jmedchem.9b01108] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have recently investigated the reactivity of aryl-fluorosulfates as warheads to form covalent adducts with Lys, Tyr, and His residues. However, the rate of reaction of aryl-fluorosulfates seemed relatively slow, putting into question their effectiveness to form covalent adducts in cell. Unlike the previously reported agents that targeted a relatively remote Lys residue with respect to the target's binding site, the current agents were designed to more directly juxtapose an aryl-fluorosulfate with a Lys residue that is located within the binding pocket of the BIR3 domain of X-linked inhibitor of apoptosis protein (XIAP). We found that such new agents can effectively and rapidly form a covalent adduct with XIAP-BIR3 in vitro and in cell, approaching the rate of reaction, cellular permeability, and stability that are similar to what attained by acrylamides when targeting Cys residues. Our studies further validate aryl-fluorosulfates as valuable Lys-targeting electrophiles, for the design of inhibitors of both enzymes and protein-protein interactions.
Collapse
|
9
|
Gambini L, Baggio C, Udompholkul P, Jossart J, Salem AF, Perry JJP, Pellecchia M. Covalent Inhibitors of Protein-Protein Interactions Targeting Lysine, Tyrosine, or Histidine Residues. J Med Chem 2019; 62:5616-5627. [PMID: 31095386 DOI: 10.1021/acs.jmedchem.9b00561] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have recently reported a series of Lys-covalent agents targeting the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) using a benzamide-sulfonyl fluoride warhead. Using XIAP as a model system, we further investigated a variety of additional warheads that can be easily incorporated into binding peptides and analyzed their ability to form covalent adducts with lysine and other amino acids, including tyrosine, histidine, serine, and threonine, using biochemical and biophysical assays. Moreover, we tested aqueous, plasma stability, cell permeability, and cellular efficacy of the most effective agents. These studies identified aryl-fluoro sulfates as likely the most suitable electrophiles to effectively form covalent adducts with Lys, Tyr, and His residues, given that these agents were cell permeable and stable in aqueous buffer and in plasma. Our studies contain a number of general findings that open new possible avenues for the design of potent covalent protein-protein interaction antagonists.
Collapse
|
10
|
Design of Potent pan-IAP and Lys-Covalent XIAP Selective Inhibitors Using a Thermodynamics Driven Approach. J Med Chem 2018; 61:6350-6363. [PMID: 29940121 DOI: 10.1021/acs.jmedchem.8b00810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently we reported that rapid determination of enthalpy of binding can be achieved for a large number of congeneric agents or in combinatorial libraries fairly efficiently. We show that using a thermodynamic Craig plot can be very useful in dissecting the enthalpy and entropy contribution of different substituents on a common scaffold, in order to design potent, selective, or pan-active compounds. In our implementation, the approach identified a critical Lys residue in the BIR3 domain of XIAP. We report for the first time that it is possible to target such residue covalently to attain potent and selective agents. Preliminary cellular studies in various models of leukemia, multiple myeloma, and pancreatic cancers suggest that the derived agents possess a potentially intriguing pattern of activity, especially for cell lines that are resistant to the pan-IAP antagonist and clinical candidate LCL161.
Collapse
|
11
|
Ohoka N, Morita Y, Nagai K, Shimokawa K, Ujikawa O, Fujimori I, Ito M, Hayase Y, Okuhira K, Shibata N, Hattori T, Sameshima T, Sano O, Koyama R, Imaeda Y, Nara H, Cho N, Naito M. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J Biol Chem 2018; 293:6776-6790. [PMID: 29545311 DOI: 10.1074/jbc.ra117.001091] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Indexed: 01/03/2023] Open
Abstract
Aberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis protein (IAP) ligand LCL161 derivative that is conjugated to the estrogen receptor α (ERα) ligand 4-hydroxytamoxifen by a PEG linker, and we have previously reported that this SNIPER efficiently degrades the ERα protein. Here, we report that derivatization of the IAP ligand module yields SNIPER(ER)s with superior protein-knockdown activity. These improved SNIPER(ER)s exhibited higher binding affinities to IAPs and induced more potent degradation of ERα than does SNIPER(ER)-87. Further, they induced simultaneous degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and delayed degradation of X-linked IAP (XIAP). Notably, these reengineered SNIPER(ER)s efficiently induced apoptosis in MCF-7 human breast cancer cells that require IAPs for continued cellular survival. We found that one of these molecules, SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xenografts in mice more potently than the previously characterized SNIPER(ER)-87. Mechanistic analysis revealed that our novel SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to degrade ERα. Our results suggest that derivatized IAP ligands could facilitate further development of SNIPERs with potent protein-knockdown and cytocidal activities against cancer cells requiring IAPs for survival.
Collapse
Affiliation(s)
- Nobumichi Ohoka
- From the Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501 and
| | - Yoko Morita
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Katsunori Nagai
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Kenichiro Shimokawa
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Osamu Ujikawa
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Ikuo Fujimori
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Masahiro Ito
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Youji Hayase
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Keiichiro Okuhira
- From the Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501 and
| | - Norihito Shibata
- From the Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501 and
| | - Takayuki Hattori
- From the Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501 and
| | - Tomoya Sameshima
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Osamu Sano
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Ryokichi Koyama
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Yasuhiro Imaeda
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Hiroshi Nara
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Nobuo Cho
- the Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa 251-8555, Japan
| | - Mikihiko Naito
- From the Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501 and
| |
Collapse
|
12
|
Feng Y, Luo Z, Sun G, Chen M, Lai J, Lin W, Goldmann S, Zhang L, Wang Z. Development of an Efficient and Scalable Biocatalytic Route to (3 R)-3-Aminoazepane: A Pharmaceutically Important Intermediate. Org Process Res Dev 2017; 21:648-654. [DOI: 10.1021/acs.oprd.7b00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yahui Feng
- School
of Bioscience and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhonghua Luo
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Guodong Sun
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
- Anti-infection
Innovation Department, New Drug Research Institute, HEC Pharma Group, Dong Guan 523871, P. R. China
| | - Minghong Chen
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Jinqiang Lai
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Wei Lin
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Siegfried Goldmann
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Lei Zhang
- School
of Bioscience and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhongqing Wang
- HEC
Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
- Anti-infection
Innovation Department, New Drug Research Institute, HEC Pharma Group, Dong Guan 523871, P. R. China
| |
Collapse
|
13
|
Liu B, Du L, Xu C, Wang Y, Wang Q, Song Z, Sun X, Wang J, Liu Q. [Radiosensitization Induced by ANTP-SmacN7 Fusion Peptide in H460 Cell Line]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:241-6. [PMID: 27215450 PMCID: PMC5973049 DOI: 10.3779/j.issn.1009-3419.2016.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
背景与目的 肿瘤的辐射耐受制约了放疗疗效,第二个线粒体衍生的半胱氨酸蛋白酶激活剂(Second mitochondria-derived activator of caspase, Smac)蛋白类似物可明显提高辐射诱导的肿瘤细胞凋亡,有望成为新型肿瘤辐射增敏药物。本研究旨在探讨新型Smac蛋白类似物ANTP-SmacN7融合肽对肺癌细胞系H460的辐射增敏作用。 方法 合成ANTP-SmacN7融合肽,连接荧光素FITC以观察融合肽能否进入细胞。对数生长期H460细胞分为空白对照组、单纯照射组、ANTP-SmacN7组和照射联合ANTP-SmacN7组,单纯照射组给予0 Gy、2 Gy、4 Gy、6 Gy照射,照射联合ANTP-SmacN7组中ANTP-SmacN7的浓度为20 μmol/L,WST-1测定H460细胞的增殖。流式细胞仪测定细胞处理后24 h和48 h的细胞凋亡率。Western blot实验检测caspase3和cleaved caspase3的表达水平。 结果 ANTP-SmacN7融合能够顺利进入细胞,且能够增强H460细胞的辐射敏感性(F=25.1,P < 0.01,增敏比为1.86),照射联合ANTP-SmacN7可明显降低H460细胞的克隆形成率(χ2=45.2, P < 0.01; χ2=40.3, P < 0.01),提高cleaved caspase3的表达量,促进caspase3的活化,增加辐射诱导的细胞凋亡率。 结论 ANTP-SmacN7融合肽可明显提高H460细胞的辐射敏感性,作为一种新的Smac蛋白类似物有望用于肿瘤的辐射增敏治疗。
Collapse
Affiliation(s)
- Baona Liu
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Liqing Du
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Chang Xu
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Yan Wang
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Qin Wang
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Zhiyi Song
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Xiaohui Sun
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Qiang Liu
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| |
Collapse
|
14
|
Sun Z, Lv J, Zhu Y, Song D, Zhu B, Miao C. Desflurane preconditioning protects human umbilical vein endothelial cells against anoxia/reoxygenation by upregulating NLRP12 and inhibiting non-canonical nuclear factor-κB signaling. Int J Mol Med 2015; 36:1327-34. [PMID: 26329693 DOI: 10.3892/ijmm.2015.2335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
Volatile anesthetics modulate endothelial cell apoptosis and inhibit nuclear factor-κB (NF-κB) signaling. In this study, we aimed to assess whether desflurane preconditioning protects human umbilical vein endothelial cells (HUVECs) agaist anoxia/reoxygenation (A/R) injury. HUVECs were pre-conditioned with desflurane (1.0 MAC) for 30 min, followed by a 15-min washout, then exposed to 60 min anoxia and 60 min reoxygenation (A/R), and incubated with 10 ng/ml tumor necrosis factor (TNF)-α for 60 min. HUVEC viability and apoptosis were measured by MTT assay and annexin V staining, and immunoblot analysis was used to measure the levels of Smac and cellular inhibitor of apoptosis 1 (cIAP1). NF-κB activation was assessed using the NF-κB signaling pathway real‑time PCR array, and the levels of NF-κB inducing kinase (NIK), p52, IκB kinase (IKK)α, p100, RelB and NLR family, pyrin domain containing 12 (NLRP12) were assessed by immunoblot analysis. Desflurane preconditioning attenuated the effects of A/R and/or A/R plus TNF-α on cell viability, decreasing the levels of Smac and enhancing the levels of of cIAP1 (P<0.05). Preconditioning with desflurane also enhanced the mRNA levels of interleukin (IL)-10 and NLRP12 in the cells exposed to A/R by 2.40- and 2.16‑fold, respectively. The HUVECs exposed to A/R had greater levels of NIK and p100 and reduced levels of p52 and IKKα. Desflurance preconditioning further increased p100 levels, decreased the level of NIK, further decreased p52 levels and further reduced IKKα levels. A/R in combination with TNF-α increased the NIK, IKKα, p100 and RelB levels, and this increase was significantly attenuated by desflurance preconditioning (all P<0.05). Desflurane preconditioning enhanced HUVEC survival and protected the cells against A/R injury, and our results suggested that this process involved the upregulation of NLRP12 and the inhibition of non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Zhirong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Jianing Lv
- Department of Neurology, Fudan University Shanghai Zhongshan Hospital, Shanghai, P.R. China
| | - Yun Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Dongli Song
- Biomedical Research Center, Fudan University Zhongshan Hospital, Shanghai, P.R. China
| | - Biao Zhu
- Department of Anesthesiology and Critical Care Unit, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Changhong Miao
- Department of Anesthesiology and Critical Care Unit, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| |
Collapse
|
15
|
|
16
|
Sun H, Lu J, Liu L, Yang CY, Wang S. Potent and selective small-molecule inhibitors of cIAP1/2 proteins reveal that the binding of Smac mimetics to XIAP BIR3 is not required for their effective induction of cell death in tumor cells. ACS Chem Biol 2014; 9:994-1002. [PMID: 24521431 PMCID: PMC4324444 DOI: 10.1021/cb400889a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Cellular
inhibitor of apoptosis protein 1 and 2 (cIAP1/2) and X-linked
inhibitor of apoptosis protein (XIAP) are key apoptosis regulators
and promising new cancer therapeutic targets. This study describes
a set of non-peptide, small-molecule Smac (second mitochondria-derived
activator of caspases) mimetics that are selective inhibitors of cIAP1/2
over XIAP. The most potent and most selective compounds bind to cIAP1/2
with affinities in the low nanomolar range and show >1,000-fold
selectivity
for cIAP1 over XIAP. These selective cIAP inhibitors effectively induce
degradation of the cIAP1 protein in cancer cells at low nanomolar
concentrations and do not antagonize XIAP in a cell-free functional
assay. They potently inhibit cell growth and effectively induce apoptosis
at low nanomolar concentrations in cancer cells with a mechanism of
action similar to that of other known Smac mimetics. Our study shows
that binding of Smac mimetics to XIAP BIR3 is not required for effective
induction of apoptosis in tumor cells by Smac mimetics. These potent
and highly selective cIAP1/2 inhibitors are powerful tools in the
investigation of the role of these IAP proteins in the regulation
of apoptosis and other cellular processes.
Collapse
Affiliation(s)
- Haiying Sun
- Comprehensive Cancer Center
and Departments of Internal Medicine, Pharmacology, and Medicinal
Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Comprehensive Cancer Center
and Departments of Internal Medicine, Pharmacology, and Medicinal
Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Liu Liu
- Comprehensive Cancer Center
and Departments of Internal Medicine, Pharmacology, and Medicinal
Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Comprehensive Cancer Center
and Departments of Internal Medicine, Pharmacology, and Medicinal
Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Comprehensive Cancer Center
and Departments of Internal Medicine, Pharmacology, and Medicinal
Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Hennessy EJ, Adam A, Aquila BM, Castriotta LM, Cook D, Hattersley M, Hird AW, Huntington C, Kamhi VM, Laing NM, Li D, MacIntyre T, Omer CA, Oza V, Patterson T, Repik G, Rooney MT, Saeh JC, Sha L, Vasbinder MM, Wang H, Whitston D. Discovery of a Novel Class of Dimeric Smac Mimetics as Potent IAP Antagonists Resulting in a Clinical Candidate for the Treatment of Cancer (AZD5582). J Med Chem 2013; 56:9897-919. [DOI: 10.1021/jm401075x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Edward J. Hennessy
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ammar Adam
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Brian M. Aquila
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Lillian M. Castriotta
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donald Cook
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Maureen Hattersley
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alexander W. Hird
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Christopher Huntington
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Victor M. Kamhi
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Naomi M. Laing
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Danyang Li
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Terry MacIntyre
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Charles A. Omer
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Vibha Oza
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Troy Patterson
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Galina Repik
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Michael T. Rooney
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jamal C. Saeh
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Li Sha
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Melissa M. Vasbinder
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Haiyun Wang
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David Whitston
- Oncology iMed, Innovative Medicines & Early Development, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
18
|
Wu J, Tang W, Pettman A, Xiao J. Efficient and Chemoselective Reduction of Pyridines to Tetrahydropyridines and PiperidinesviaRhodium-Catalyzed Transfer Hydrogenation. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201201034] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|