1
|
Shimkin KW, Compton JS, Diccianni JB, Waldo JP, Jones WM, Krawczuk PJ, Rosano RJ. Rapid Synthesis of Highly Substituted 1,6-Naphthyridines Via Heteroaryl Ditriflates. J Org Chem 2024; 89:10912-10918. [PMID: 39031089 DOI: 10.1021/acs.joc.4c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
We report the discovery of a convenient and efficient method for the synthesis of highly substituted 1,6-naphthyridines. A tandem nitrile hydration/cyclization procedure was developed to access 1,6-naphthyridine-5,7-diones under mild conditions. Subsequently, we have found that ditriflation of these intermediates provides 1,6-naphthyridine-5,7-ditriflates which are bench-stable but highly reactive intermediates that can be engaged in one-pot difunctionalization reactions leading to diverse drug-like products in rapid fashion.
Collapse
Affiliation(s)
- Kirk W Shimkin
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jordan S Compton
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| | - Justin B Diccianni
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jesse P Waldo
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| | - William M Jones
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| | - Paul J Krawczuk
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| | - Robert J Rosano
- Therapeutics Discovery, Janssen Pharmaceutical Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
2
|
Jan G, Kumar A, Karuppasamy M, Rajput D, Slathia N, Kapoor KK, Sridharan V. Microwave-assisted one-pot two-step imine formation-hetero-Diels-Alder-detosylation/aromatization sequence: direct access to dibenzo[ b, h][1,6]naphthyridines. Org Biomol Chem 2022; 20:7472-7482. [PMID: 36102029 DOI: 10.1039/d2ob01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microwave-assisted, copper-catalyzed, one-pot, two-step reaction is established to access functionalized [1,6]naphthyridines in high yields (up to 96%) starting from 2-(N-propargylamino)benzaldehydes and arylamines. This rapid and operationally simple sequential reaction allowed the construction of two new heterocyclic rings and three new (2 C-C and 1 C-N) bonds in a single synthetic operation. This reaction tolerated various electron-donating and electron-withdrawing substituents well and delivered the desired products in a shorter reaction time under microwave irradiation. This reaction proceeds through a sequential imine formation, intramolecular [4 + 2] hetero-Diels-Alder reaction, and air oxidation, followed by detosylation-aromatization steps.
Collapse
Affiliation(s)
- Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Atul Kumar
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu-180006, J&K, India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu-180006, J&K, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| |
Collapse
|
3
|
Devadoss T, Sowmya V, Bastati R. Synthesis of 1,6‐Naphthyridine and Its Derivatives: A Systematic Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thangaraj Devadoss
- Department of Pharmaceutical Chemistry KVSR Siddhartha College of Pharmaceutical Sciences Pinnamaneni Polyclinic Road, Siddhartha Nagar, Vijayawada Andhra Pradesh India, PIN- 520010
| | - Veldhi Sowmya
- Department of Pharmaceutical Chemistry KVSR Siddhartha College of Pharmaceutical Sciences Pinnamaneni Polyclinic Road, Siddhartha Nagar, Vijayawada Andhra Pradesh India, PIN- 520010
| | - Ravali Bastati
- Department of Pharmaceutical Chemistry KVSR Siddhartha College of Pharmaceutical Sciences Pinnamaneni Polyclinic Road, Siddhartha Nagar, Vijayawada Andhra Pradesh India, PIN- 520010
| |
Collapse
|
4
|
Lavanya M, Lin C, Mao J, Thirumalai D, Aabaka SR, Yang X, Mao J, Huang Z, Zhao J. Synthesis and Anticancer Properties of Functionalized 1,6-Naphthyridines. Top Curr Chem (Cham) 2021; 379:13. [PMID: 33624162 DOI: 10.1007/s41061-020-00314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
The burgeoning interest in synthesis and biological applications of 1,6-naphthyridines reflects the importance of 1,6-naphthyridines in the synthetic as well as medicinal chemistry fields. Specially, 1,6-naphthyridines are pharmacologically active, with variety of applications such as anticancer, anti-human immunodeficiency virus (HIV), anti-microbial, analgesic, anti-inflammatory and anti-oxidant activities. Although collective recent synthetic developments have paved a path to a wide range of functionalized 1,6-naphthyridines, a complete correlation of synthesis with biological activity remains elusive. The current review focuses on recent synthetic developments from the last decade and a thorough study of the anticancer activity of 1,6-naphthyridines on different cancer cell lines. Anticancer activity has been correlated to 1,6-naphthyridines using the literature on the structure-activity relationship (SAR) along with molecular modeling studies. Exceptionally, at the end of this review, the utility of 1,6-naphthyridines displaying activities other than anticancer has also been included as a glimmering extension.
Collapse
Affiliation(s)
- Mallu Lavanya
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.,School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Chong Lin
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.
| | - Jincheng Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.
| | | | - Sreenath Reddy Aabaka
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Xiaojiang Yang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Jinhua Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Zhiyu Huang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Jinzhou Zhao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| |
Collapse
|
5
|
Jankowska A, Świerczek A, Wyska E, Gawalska A, Bucki A, Pawłowski M, Chłoń-Rzepa G. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr Drug Targets 2020; 20:122-143. [PMID: 30091414 DOI: 10.2174/1389450119666180808105056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase 10A (PDE10A) is a double substrate enzyme that hydrolyzes second messenger molecules such as cyclic-3',5'-adenosine monophosphate (cAMP) and cyclic-3',5'-guanosine monophosphate (cGMP). Through this process, PDE10A controls intracellular signaling pathways in the mammalian brain and peripheral tissues. Pharmacological, biochemical, and anatomical data suggest that disorders in the second messenger system mediated by PDE10A may contribute to impairments in the central nervous system (CNS) function, including cognitive deficits as well as disturbances of behavior, emotion processing, and movement. This review provides a detailed description of PDE10A and the recent advances in the design of selective PDE10A inhibitors. The results of preclinical studies regarding the potential utility of PDE10A inhibitors for the treatment of CNS-related disorders, such as schizophrenia as well as Huntington's and Parkinson's diseases are also summarized.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
6
|
Yang Y, Cao L, Gao H, Wu Y, Wang Y, Fang F, Lan T, Lou Z, Rao Y. Discovery, Optimization, and Target Identification of Novel Potent Broad-Spectrum Antiviral Inhibitors. J Med Chem 2019; 62:4056-4073. [DOI: 10.1021/acs.jmedchem.9b00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yiqing Yang
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | - Lin Cao
- College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hongying Gao
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | | | - Yaxin Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | | | | | | | | |
Collapse
|
7
|
Fan HT, Guo JF, Zhang YX, Gu YX, Ning ZQ, Qiao YJ, Wang X. The rational search for PDE10A inhibitors from Sophora flavescens roots using pharmacophore‑ and docking‑based virtual screening. Mol Med Rep 2017; 17:388-393. [PMID: 29115449 DOI: 10.3892/mmr.2017.7871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Collapse
Affiliation(s)
- Han-Tian Fan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Jun-Fang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yu-Xin Zhang
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Yu-Xi Gu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Qi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM‑Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
8
|
Yoshikawa M, Hitaka T, Hasui T, Fushimi M, Kunitomo J, Kokubo H, Oki H, Nakashima K, Taniguchi T. Design and synthesis of potent and selective pyridazin-4(1H)-one-based PDE10A inhibitors interacting with Tyr683 in the PDE10A selectivity pocket. Bioorg Med Chem 2016; 24:3447-55. [DOI: 10.1016/j.bmc.2016.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
9
|
Jansen C, Kooistra AJ, Kanev GK, Leurs R, de Esch IJP, de Graaf C. PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. J Med Chem 2016; 59:7029-65. [DOI: 10.1021/acs.jmedchem.5b01813] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chimed Jansen
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Albert J. Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Georgi K. Kanev
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Hamaguchi W, Masuda N, Samizu K, Mihara T, Takama K, Watanabe T. Synthesis and in vivo evaluation of novel quinoline derivatives as phosphodiesterase 10A inhibitors. Chem Pharm Bull (Tokyo) 2015; 62:1200-13. [PMID: 25450629 DOI: 10.1248/cpb.c14-00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel class of phosphodiesterase 10A (PDE10A) inhibitors with improved metabolic stability in mouse liver microsomes were designed and synthesized starting from 2-({4-[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]phenoxy}methyl)quinoline (MP-10). Replacement of the phenoxymethyl part of MP-10 with an oxymethyl phenyl unit led to the identification of 2-[4-({[1-methyl-4-(pyridin-4-yl)-1H-pyrazol-3-yl]oxy}methyl)phenyl]quinoline (14), which showed moderate PDE10A inhibitory activity with improved metabolic stability in mouse and human liver microsomes over MP-10. Compound 14 showed high concentrations in plasma and brain after intraperitoneal administration and dose-dependently attenuated the hyperlocomotion induced by phencyclidine in mice, and oral administration of 14 (0.1, 0.3 mg/kg) also improved visual-recognition memory impairment in mice.
Collapse
|
11
|
Synthesis, SAR study, and biological evaluation of novel quinoline derivatives as phosphodiesterase 10A inhibitors with reduced CYP3A4 inhibition. Bioorg Med Chem 2015; 23:297-313. [DOI: 10.1016/j.bmc.2014.11.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/01/2023]
|
12
|
Umar T, Hoda N. Selective inhibitors of phosphodiesterases: therapeutic promise for neurodegenerative disorders. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00419e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PDE inhibitors: significant contributors to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tarana Umar
- Department of Chemistry
- Jamia Millia Islamia
- Central University
- New Delhi
- 110025 India
| | - Nasimul Hoda
- Department of Chemistry
- Jamia Millia Islamia
- Central University
- New Delhi
- 110025 India
| |
Collapse
|
13
|
Kunitomo J, Yoshikawa M, Fushimi M, Kawada A, Quinn JF, Oki H, Kokubo H, Kondo M, Nakashima K, Kamiguchi N, Suzuki K, Kimura H, Taniguchi T. Discovery of 1-[2-Fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (TAK-063), a Highly Potent, Selective, and Orally Active Phosphodiesterase 10A (PDE10A) Inhibitor. J Med Chem 2014; 57:9627-43. [DOI: 10.1021/jm5013648] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Kunitomo
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yoshikawa
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Makoto Fushimi
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akira Kawada
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - John F. Quinn
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12203, United States
| | - Hideyuki Oki
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironori Kokubo
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuyo Kondo
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kosuke Nakashima
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naomi Kamiguchi
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunori Suzuki
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiko Taniguchi
- Pharmaceutical
Research Division, Takeda Pharmaceutical Company Limited, 26-1,
Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
14
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Hamaguchi W, Masuda N, Isomura M, Miyamoto S, Kikuchi S, Amano Y, Honbou K, Mihara T, Watanabe T. Design and synthesis of novel benzimidazole derivatives as phosphodiesterase 10A inhibitors with reduced CYP1A2 inhibition. Bioorg Med Chem 2013; 21:7612-23. [DOI: 10.1016/j.bmc.2013.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 01/24/2023]
|
16
|
Li C, Mu XY, Li YL, Liu Y, Wang XS. Combinatorial synthesis of fused tetracyclic heterocycles containing [1,6]naphthyridine derivatives under catalyst free conditions. ACS COMBINATORIAL SCIENCE 2013; 15:267-72. [PMID: 23581605 DOI: 10.1021/co400020w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A three-component reaction between an aromatic aldehyde, an amine, and tert-butyl 2,4-dioxopiperidine-1-carboxylate in EtOH at refluxing temperature gave fused tetracyclic heterocycles in high yields. The amines include 1H-indazol-5-amine, 1H-indazol-6-amine, 1H-indol-5-amine, and 1H-benzo[d]imidazol-5-amine, giving 11-aryl-3H-indazolo[5,4-b][1,6] naphthyridine, 11-aryl-1H-indazolo[6,7-b][1,6]naphthyridine, 11-aryl-3H-indolo[5,4-b][1,6]naph-thyridine, and 11-aryl-3H-imidazo[4',5':3,4]benzo[1,2-b][1,6]naphthyridine derivatives, respectively.
Collapse
Affiliation(s)
- Chao Li
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Xing-Ye Mu
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Yu-Ling Li
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Yun Liu
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| | - Xiang-Shan Wang
- School of Chemistry and Chemical
Engineering, Jiangsu
Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P.
R. China
| |
Collapse
|
17
|
Geschwindner S, Dekker N, Horsefield R, Tigerström A, Johansson P, Scott CW, Albert JS. Development of a Plate-Based Optical Biosensor Fragment Screening Methodology to Identify Phosphodiesterase 10A Inhibitors. J Med Chem 2013; 56:3228-34. [DOI: 10.1021/jm301665y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Niek Dekker
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Rob Horsefield
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Anna Tigerström
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Patrik Johansson
- Discovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden
| | - Clay W. Scott
- CNS Discovery Research, AstraZeneca
Pharmaceuticals, 1800 Concord Pike, PO Box 15437, Wilmington, Delaware
19850, United States
| | - Jeffrey S. Albert
- CNS Discovery Research, AstraZeneca
Pharmaceuticals, 1800 Concord Pike, PO Box 15437, Wilmington, Delaware
19850, United States
| |
Collapse
|
18
|
Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J Med Chem 2013; 56:3148-67. [PMID: 23452331 DOI: 10.1021/jm301848w] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper nucleosides availability is crucial for the proliferation of living entities (eukaryotic cells, parasites, bacteria, and virus). Accordingly, the uses of inhibitors of the de novo nucleosides biosynthetic pathways have been investigated in the past. In the following we have focused on dihydroorotate dehydrogenase (DHODH), the fourth enzyme in the de novo pyrimidine nucleosides biosynthetic pathway. We first described the different types of enzyme in terms of sequence, structure, and biochemistry, including the reported bioassays. In a second part, the series of inhibitors of this enzyme along with a description of their potential or actual uses were reviewed. These inhibitors are indeed used in medicine to treat autoimmune diseases such as rheumatoid arthritis or multiple sclerosis (leflunomide and teriflunomide) and have been investigated in treatments of cancer, virus, and parasite infections (i.e., malaria) as well as in crop science.
Collapse
Affiliation(s)
- Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
19
|
Wu Q, Gao Q, Guo H, Li D, Wang J, Gao W, Han C, Li Y, Yang L. Inhibition mechanism exploration of quinoline derivatives as PDE10A inhibitors by in silico analysis. MOLECULAR BIOSYSTEMS 2013; 9:386-97. [DOI: 10.1039/c2mb25501d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
|
21
|
DeNinno MP. Future directions in phosphodiesterase drug discovery. Bioorg Med Chem Lett 2012; 22:6794-800. [PMID: 23046962 DOI: 10.1016/j.bmcl.2012.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/06/2012] [Accepted: 09/09/2012] [Indexed: 11/26/2022]
Abstract
Research on phosphodiesterases both in academic labs and in the pharmaceutical industry has remained steady over the past 35 years. Although there have been some clinical successes, they have been clustered around just a couple of PDE isoforms, and disproportionate to the huge investment put forth against what seem like very druggable targets. This review attempts to uncover the reasons for the lack of productivity in PDE drug discovery, and summarizes the current hot areas of research. In addition, new insights gathered about structure-function relationships are highlighted, in particular those relating to enzyme regulation. Lastly, novel strategies for targeting the activation or inactivation of selected PDEs are proposed that may allow for a more targeted approach for PDE modulation.
Collapse
Affiliation(s)
- Michael P DeNinno
- Vertex Pharmaceuticals Inc., 11010 Torreyana Rd, San Diego, CA 92121, United States.
| |
Collapse
|