1
|
Xiao L, Chen J, He X, Zhang X, Luo W. Whole-transcriptome sequencing revealed the ceRNA regulatory network during the proliferation and differentiation of goose myoblast. Poult Sci 2024; 103:104173. [PMID: 39153268 PMCID: PMC11471125 DOI: 10.1016/j.psj.2024.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
The Shitou goose, the largest meat-type goose breed, is an ideal model for offering insights into enhancing meat production efficiency through understanding its genetic regulation of muscle development. Here, through whole-transcriptomic analysis of embryonic leg muscles, we identified 847 differentially expressed genes (DEG), 244 differentially expressed lncRNAs (DEL), 37 differentially expressed circRNAs (DEC), and 84 differentially expressed miRNAs (DEM). Gene ontology (GO) analysis highlighted the significant enrichment of differentially expressed RNAs in muscle structure development, actin filament-based processes, and the actin cytoskeleton pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified pathways associated with the FoxO signaling pathway, AMPK signaling pathway, Wnt signaling pathway and calcium signaling pathway. Furthermore, we utilized Miranda, TargetScan, and miRDB to identify regulatory networks that involve interactions between lncRNA-mRNA, circRNA-mRNA, miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA, which regulated the growth and development of skeletal muscle. Notably, differentially expressed genes within the ceRNA network were most significantly enriched in the regulation of actin cytoskeletal organization. Additionally, a lncRNA/circRNA-miRNA-mRNA ceRNA network related to muscle growth and development was constructed based on protein-protein interaction (PPI) analysis and hub genes selection using Cytoscape. This further elucidated the regulatory roles of noncoding RNAs (ncRNA) in the formation of muscle fibers in Shitou goose. In summary, this study provides a valuable transcriptional regulatory network for goose muscle development laying the groundwork for further exploration of the molecular regulatory mechanisms underlying the excellent meat production performance of Shitou goose.
Collapse
Affiliation(s)
- Liangchao Xiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xueying He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Huang J, Rao L, Zhang W, Chen X, Li H, Zhang F, Xie J, Wei Q. Effect of crossbreeding and sex on slaughter performance and meat quality in Xingguo gray goose based on multiomics data analysis. Poult Sci 2023; 102:102753. [PMID: 37267641 PMCID: PMC10244692 DOI: 10.1016/j.psj.2023.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023] Open
Abstract
Here, we examined the effects of crossbreeding and sex on growth performance, slaughter performance, and meat quality in Xingguo gray (XG) goose, using transcriptomic and metabolomic techniques. The experiment was conducted using 400 goslings (1-day old) of 2 genotypes: the XG breed and its ternary hybrids [F2 geese; (XG Goose♂ × Yangzhou Goose♀)♀ × Shitou Goose♂]. The goslings were divided into 4 groups: female XG, male XG, female F2 geese, and male F2 geese, and growth parameters were examined at 70 d of age, using 30 birds from each group. Following slaughter, samples of breast and thigh muscles were collected from each group for chemical, metabolome, and transcriptome analyses. Growth rate, live body and slaughter weights, meat chemical composition, and muscle fiber diameter were affected by crossbreeding and sex. Crossbreeding significantly improved the dressing percentage, semieviscerated rate, eviscerated yield, and abdominal fat yield of XG geese. To clarify the potential regulatory network affected by crossbreeding and sex, we used RNA-seq and nontargeted metabolomics to detect changes in male and female goose breast muscle. The transcriptome results showed that there were 534, 323, 297, and 492 differently expressed genes (DEGs) among the 4 comparison groups (XG-Female vs. F2-Female, XG-Male vs. F2-Male, F2-Male vs. F2-Female, and XG-Male vs. XG-Female, respectively) that were mainly related to muscle growth and development and fatty acid metabolism pathways. A total of 141 significantly differentially accumulated metabolites (DAMs) were enriched in serine and threonine, propionate, and pyruvate metabolism. Finally, we comprehensively analyzed the metabolome and transcriptome data and found that many DEGs and DAMs played crucial roles in lipid metabolism and muscle growth and development. In summary, crossbreeding can improve XG goose production performance and affect breast muscle gene expression and metabolites in both female and male geese.
Collapse
Affiliation(s)
- Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Linjie Rao
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| |
Collapse
|
3
|
2- OMe -lysophosphatidylcholine analogues are GPR119 ligands and activate insulin secretion from βTC-3 pancreatic cells: Evaluation of structure-dependent biological activity. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:91-103. [DOI: 10.1016/j.bbalip.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/08/2023]
|
4
|
The chemical synthesis and preliminary biological studies of phosphodiester and phosphorothioate analogues of 2-methoxy-lysophosphatidylethanolamine. Bioorg Med Chem Lett 2016; 26:3725-9. [PMID: 27268697 DOI: 10.1016/j.bmcl.2016.05.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/22/2022]
Abstract
The chemical synthesis of phosphorothioate/phosphodiester analogues of 2-methoxy-lysophosphatidylethanolamine has been described. For the preparation of phosphorothioate derivatives oxathiaphospholane approach has been employed. The phosphodiester compounds were prepared by OXONE® oxidation of corresponding phosphorothioates. Each lysophospholipid analogue was synthesized as a series of four compounds, bearing different fatty acid residues both saturated (14:0, 16:0, 18:0) and unsaturated (18:1). The methylation of glycerol 2-hydroxyl function was applied in order to increase the stability of prepared analogues by preventing 1→2 acyl migration. The cytotoxicity of newly synthesized 2-methoxy-lysophosphatidylethanolamine derivatives was evaluated with resazurin-based method in prostate cancer PC3 cell line. The highest reduction of cell viability was noted for LPE analogues containing myristoyl acyl chain.
Collapse
|
5
|
Delgado-Buenrostro NL, Mújica A, Chiquete-Felix N, Déciga-Alcaraz A, Medina-Reyes EI, Uribe-Carvajal S, Chirino YI. Role of Wasp and the small GTPases RhoA, RhoB, and Cdc42 during capacitation and acrosome reaction in spermatozoa of English guinea pigs. Mol Reprod Dev 2016; 83:927-937. [PMID: 27182927 DOI: 10.1002/mrd.22657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 11/08/2022]
Abstract
Cytoskeleton remodeling is necessary for capacitation and the acrosome reaction in spermatozoa. F-actin is located in the acrosome and equatorial region during capacitation, but is relocated in the post-acrosomal region during the acrosome reaction in spermatozoa from bull, rat, mice, and guinea pig. Actin polymerization and relocalization are generally regulated by small GTPases that activate Wasp protein, which coordinates with Arp2/3, profilin I, and profilin II to complete cytoskeletal remodeling. This sequence of events is not completely described in spermatozoa, though. Therefore, the aim of this study was to determine if Wasp interacts with small GTPases (RhoA, RhoB, and Cdc42) and proteins (Arp2/3, profilin I, and profilin II) that co-localize with F-actin during capacitation and the acrosome reaction in English guinea pig spermatozoa obtained from the vas deferens. The spermatozoa were capacitated in calcium-free medium, incubated with an activator or an inhibitor of GTPases, and then induced to acrosome react using calcium. The distribution patterns of F-actin were compared to the patterns of Wasp and its putative interaction partners: Wasp and RhoB, but not RhoA or Cdc42, localization overlap with F-actin during capacitation and the acrosome reaction. Activation of small GTPases localized RhoB to the post-acrosomal region whereas their inhibition prevented acrosome exocytosis. Arp2/3 and profilin II appear to interact with Wasp in the post-acrosomal region and flagellum, while profilin I and Wasp could be found in the equatorial region. Thus, Wasp and F-actin distribution overlap during capacitation and acrosome reaction, and small GTPases play an important role in cytoskeleton remodeling during these processes in spermatozoa. Mol. Reprod. Dev. 83: 927-937, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Norma L Delgado-Buenrostro
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Sección de Bioquímica y Farmacología Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México, CP 54743
| | - Adela Mújica
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México, CP 07360
| | - Natalia Chiquete-Felix
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México, CP 04510
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CP 07360
| | - Estefany I Medina-Reyes
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CP 07360
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México, CP 04510
| | - Yolanda I Chirino
- Unidad de Biomedicina UBIMED, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, CP 54090.
| |
Collapse
|
6
|
Benesch MGK, Zhao YY, Curtis JM, McMullen TPW, Brindley DN. Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J Lipid Res 2015; 56:1134-44. [PMID: 25896349 DOI: 10.1194/jlr.m057661] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Autotaxin (ATX) is a secreted enzyme, which produces extracellular lysophosphatidate (LPA) from lysophosphatidylcholine (LPC). LPA activates six G protein-coupled receptors and this is essential for vasculogenesis during embryonic development. ATX is also involved in wound healing and inflammation, and in tumor growth, metastasis, and chemo-resistance. It is, therefore, important to understand how ATX is regulated. It was proposed that ATX activity is inhibited by its product LPA, or a related lipid called sphingosine 1-phosphate (S1P). We now show that this apparent inhibition is ineffective at the high concentrations of LPC that occur in vivo. Instead, feedback regulation by LPA and S1P is mediated by inhibition of ATX expression resulting from phosphatidylinositol-3-kinase activation. Inhibiting ATX activity in mice with ONO-8430506 severely decreased plasma LPA concentrations and increased ATX mRNA in adipose tissue, which is a major site of ATX production. Consequently, the amount of inhibitor-bound ATX protein in the plasma increased. We, therefore, demonstrate the concept that accumulation of LPA in the circulation decreases ATX production. However, this feedback regulation can be overcome by the inflammatory cytokines, TNF-α or interleukin 1β. This enables high LPA and ATX levels to coexist in inflammatory conditions. The results are discussed in terms of ATX regulation in wound healing and cancer.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yuan Y Zhao
- Departments of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan M Curtis
- Departments of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
8
|
Rytczak P, Drzazga A, Gendaszewska-Darmach E, Okruszek A. The chemical synthesis and cytotoxicity of new sulfur analogues of 2-methoxy-lysophosphatidylcholine. Bioorg Med Chem Lett 2013; 23:6794-8. [PMID: 24206765 DOI: 10.1016/j.bmcl.2013.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 12/01/2022]
Abstract
The chemical synthesis of phosphorothioate/phosphorodithioate analogues of 2-methoxy-lysophosphatidylcholine has been described. For the preparation of new sulfur derivatives of lysophosphatidylcholine both oxathiaphospholane and dithiaphospholane approaches have been employed. Each lysophospholipid analogue was synthesized as a series of five compounds, bearing different fatty acid residues both saturated (12:0, 14:0, 16:0, 18:0) and unsaturated (18:1). The methylation of glycerol 2-hydroxyl function was applied in order to increase the stability of prepared analogues by preventing 1 → 2 acyl migration. The cellular toxicity of newly synthesized 2-methoxy-lysophosphatidylcholine derivatives was measured using MTT viability assay and lactate dehydrogenase release method.
Collapse
Affiliation(s)
- Przemysław Rytczak
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | | | | | | |
Collapse
|
9
|
Wirries A, Schubert AK, Zimmermann R, Jabari S, Ruchholtz S, El-Najjar N. Thymoquinone accelerates osteoblast differentiation and activates bone morphogenetic protein-2 and ERK pathway. Int Immunopharmacol 2013; 15:381-6. [DOI: 10.1016/j.intimp.2012.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/11/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022]
|