1
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
2
|
Lee S, Lee JC, Subedi L, Cho KH, Kim SY, Park HJ, Kim KH. Bioactive compounds from the seeds of Amomum tsaoko Crevost et Lemaire, a Chinese spice as inhibitors of sphingosine kinases, SPHK1/2. RSC Adv 2019; 9:33957-33968. [PMID: 35528925 PMCID: PMC9073669 DOI: 10.1039/c9ra07988b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 11/21/2022] Open
Abstract
Amomum tsaoko Crevost et Lemaire (Zingiberaceae), a traditional Chinese spice also known as “Caoguo” or “tsao-ko,” has been considered to have many health benefits. As part of our continuous efforts to screen natural resources exhibiting potential bioactivity, we examined the seeds of A. tsaoko and found that its EtOH extract inhibited sphingosine kinases 1 and 2 (SPHK1/2). Bioactivity-based analysis and chemical investigation of the EtOH extract led to the isolation and identification of four aliphatic alcohols (1–4), five fatty acids (5–9), 12 phenolics (10–21), and four terpenoids (22–25), including four new compounds, an acetylated aliphatic alcohol (2), a fatty acid (5), and two phenolics (10–11). In addition, compound 1 was isolated for the first time from natural sources in this study. The structures of all compounds were elucidated based on spectroscopic analysis, including 1D and/or 2D NMR and HR-ESIMS as well as LC/MS analysis. A recently developed method using competing enantioselective acylation (CEA) coupled with LC/MS analysis was applied for the assignment of absolute configuration of compound 5. The absolute configurations of compounds 10 and 11 were determined using ECD calculations. All of the compounds (1–25) isolated from the active fraction were evaluated for their SPHK1/2 inhibitory effects at the concentration of 10 μM. Aliphatic alcohols 2–4, fatty acids 7 and 9, and phenolic compounds 13–15 and 21 showed inhibition against the activity of SPHK1 up to 20% and aliphatic alcohols 2 and 4, fatty acid 8, and phenolic compounds 10, 11, 18, and 22 showed inhibition against the activity of SPHK2 up to 40% compared with the control. Compound 2 showed the highest potency to inhibit SPHK1 enzymatic activity, by 59.75%, and compound 22 showed the highest potency in inhibiting the activity of SPHK2, by 22.75%, in comparison with the control, where both exhibited higher inhibition compared to those of positive controls. Docking modeling studies were conducted to suggest the binding mode of 2 and 22 in the substrate-binding pocket of SPHK1 and SPHK2, respectively. New bioactive compounds were identified from the seeds of Amomum tsaoko Crevost et Lemaire, a Chinese spice as inhibitors of sphingosine kinases, SPHK1/2.![]()
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Joo Chan Lee
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Lalita Subedi
- College of Pharmacy
- Gachon University
- Incheon 21936
- Republic of Korea
| | - Kyo Hee Cho
- College of Pharmacy
- Gachon University
- Incheon 21936
- Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy
- Gachon University
- Incheon 21936
- Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| |
Collapse
|
3
|
Kumar N, Mishra SS, Sharma CS, Singh HP, Kalra S. In silico binding mechanism prediction of benzimidazole based corticotropin releasing factor-1 receptor antagonists by quantitative structure activity relationship, molecular docking and pharmacokinetic parameters calculation. J Biomol Struct Dyn 2017; 36:1691-1712. [PMID: 28521603 DOI: 10.1080/07391102.2017.1332688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite the various research efforts toward the treatment of stress-related disorders, the drug has not yet launched last 20 years. Corticotropin releasing factor-1 receptor antagonists have been point of great interest in stress-related disorders. In the present study, we have selected benzazole scaffold-based compounds as corticotropin releasing factor-1 antagonists and performed 2D and 3D QSAR studies to identify the structural features to elucidating the binding mechanism prediction. The best 2D QSAR model was obtained through multiple linear regression method with r2 value of .7390, q2 value of .5136 and pred_r2 (predicted square correlation coefficient) value of .88. The contribution of 2D descriptor, T_2_C_1 was 60% (negative contribution) and 4pathClusterCount was 40.24% (positive contribution) in enhancing the activity. Also 3D QSAR model was statistically significant with q2 value of .9419 and q2_se (standard error of internal validation) value of .19. Statistical parameters results prove the robustness and significance of both models. Further, molecular docking and pharmacokinetic analysis was performed to explore the scope of investigation. Docking results revealed that the all benzazole compounds show hydrogen bonding with residue Asn283 and having same hydrophobic pocket (Phe286, Leu213, Ile290, Leu287, Phe207, Arg165, Leu323, Tyr327, Phe284, and Met206). Compound B14 has higher activity compare to reference molecules. Most of the compounds were found within acceptable range for pharmacokinetic parameters. This work provides the extremely useful leads for structural substituents essential for benzimidazole moiety to exhibit antagonistic activity against corticotropin releasing factor-1 receptors.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Department of Pharmaceutical Chemistry , Geetanjali College of Pharmacy , Udaipur 313001 , India
| | - Shashank Shekhar Mishra
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Chandra Shekhar Sharma
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Hamendra Pratap Singh
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Sourav Kalra
- c Centre for Human Genetics & Molecular Medicine , Central University of Punjab , Bhatinda 151001 , India
| |
Collapse
|
4
|
Long J, Lee WS, Chough C, Bae IH, Kim BM. Synthesis toward CRHR1 Antagonists through 2,7-Dimethylpyrazolo[1,5-α][1,3,5]triazin-4(3H)-one C–H Arylation. J Org Chem 2015; 80:4716-21. [DOI: 10.1021/jo502894r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinghai Long
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Woong-Sup Lee
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Chieyeon Chough
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Il Hak Bae
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - B. Moon Kim
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
5
|
Williams JP. Corticotropin-releasing factor 1 receptor antagonists: a patent review. Expert Opin Ther Pat 2013; 23:1057-68. [DOI: 10.1517/13543776.2013.795545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Zhu LJ, Hou YL, Shen XY, Pan XD, Zhang X, Yao XS. Monoterpene pyridine alkaloids and phenolics from Scrophularia ningpoensis and their cardioprotective effect. Fitoterapia 2013; 88:44-9. [PMID: 23602903 DOI: 10.1016/j.fitote.2013.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/15/2022]
Abstract
Scrophularianines A-C (1-3), three new unusual monoterpene pyridine alkaloids with cyclopenta [c] pyridine skeleton reported from the genus Scrophularia for the first time, together with 15 known compounds (4-18), were isolated from the extract of Scrophularia ningpoensis. Their structures were elucidated on the basis of extensive analyses of spectroscopic evidences. The biogenetic relationship between monoterpene pyridine alkaloids and iridoids was proposed preliminarily. The myocardial protective bioassay indicated that compounds 13 and 14 with a concentration of 10(-4)M exhibited significantly protective effect against H2O2-induced apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Ling-Juan Zhu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yun-Long Hou
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, PR China
| | - Xiu-Yu Shen
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiao-Dong Pan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, PR China
| | - Xue Zhang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Xin-Sheng Yao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Takeda K, Terauchi T, Hashizume M, Shin K, Ino M, Shibata H, Yonaga M. Design, synthesis, and structure–activity relationships of a series of 2-Ar-8-methyl-5-alkylaminoquinolines as novel CRF1 receptor antagonists. Bioorg Med Chem Lett 2012; 22:5372-8. [DOI: 10.1016/j.bmcl.2012.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 01/03/2023]
|