1
|
Ramesh R, Reddy DS. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. J Med Chem 2017; 61:3779-3798. [DOI: 10.1021/acs.jmedchem.7b00718] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Remya Ramesh
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| |
Collapse
|
2
|
Ordóñez M, Cativiela C, Romero-Estudillo I. An update on the stereoselective synthesis of γ-amino acids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Rémond E, Martin C, Martinez J, Cavelier F. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides. Chem Rev 2016; 116:11654-11684. [DOI: 10.1021/acs.chemrev.6b00122] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Emmanuelle Rémond
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Charlotte Martin
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Florine Cavelier
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
4
|
Fukasawa H, Muratake H, Nagae M, Sugiyama K, Shudo K. Transdermal administration of aqueous pregabalin solution as a potential treatment option for patients with neuropathic pain to avoid central nervous system-mediated side effects. Biol Pharm Bull 2014; 37:1816-9. [PMID: 25212662 DOI: 10.1248/bpb.b14-00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregabalin, (S)-3-isobutyl-γ-aminobutyric acid (GABA), is a widely used adjuvant therapy for patients with neuropathic pain, which is defined as chronic pain caused by lesions or diseases of the somatosensory nervous system. However, dizziness and somnolence (sleepiness) are common dose-limiting side effects, probably due to excessive sedative effects on higher centers of the central nervous system (CNS) which are involved in the anticonvulsant and analgesic actions of pregabalin. We speculated that transdermal delivery would minimize centrally mediated side effects. To test this idea, we evaluated the analgesic effects of pregabalin delivered through the transdermal route in animal models of neuropathic pain. Transdermally administered pregabalin increased the pain thresholds in response to mechanical stimuli in a partial sciatic nerve ligation model in rats and a spinal nerve ligation model in mice, and surprisingly also in normal animals. It is noteworthy that simple transdermal application of an aqueous solution of pregabalin is effective. This could be a useful treatment option to avoid or minimize the CNS-mediated side effects of orally administered pregabalin.
Collapse
|
5
|
Fukasawa H, Muratake H, Ito A, Suzuki H, Amano Y, Nagae M, Sugiyama K, Shudo K. Silicon-containing GABA derivatives, silagaba compounds, as orally effective agents for treating neuropathic pain without central-nervous-system-related side effects. ACS Chem Neurosci 2014; 5:525-32. [PMID: 24738473 PMCID: PMC4102965 DOI: 10.1021/cn500053d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neuropathic pain is a chronic condition resulting from neuronal damage. Pregabalin, the (S)-isomer of 3-isobutyl-γ-aminobutyric acid (GABA), is widely used to treat neuropathic pain, despite the occurrence of central nervous system (CNS)-related side effects such as dizziness and somnolence. Here we describe the pharmacology of novel GABA derivatives containing silicon-carbon bonds, silagaba compounds. Silagaba131, 132, and 161 showed pregabalin-like analgesic activities in animal models of neuropathic pain, but in contrast to pregabalin they did not impair neuromuscular coordination in rotarod tests. Pharmacokinetic studies showed that brain exposure to silagaba compounds was lower than that to pregabalin. Surprisingly, despite their potent analgesic action in vivo, silagaba compounds showed only weak binding to α2-δ protein. These compounds may be useful to study mechanisms of neuropathic pain. Our results also indicate that silagaba132 and 161 are candidates for orally effective treatment of neuropathic pain without CNS-related side effects.
Collapse
Affiliation(s)
- Hiroshi Fukasawa
- Research Foundation
ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| | - Hideaki Muratake
- Research Foundation
ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| | - Ai Ito
- Research Foundation
ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| | - Hideyuki Suzuki
- Research Foundation
ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| | - Yohei Amano
- Research Foundation
ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| | - Marina Nagae
- Department
of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kiyoshi Sugiyama
- Department
of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Koichi Shudo
- Research Foundation
ITSUU Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan
| |
Collapse
|