1
|
Wang W, Chen Y, Wang Y, Wang Y, Zhang W, Dai K, Geng W, Tang S. Azo-linked 5-ASA-coumarin prodrug: Fluorescent tracking for colonic drug release in UC treatment. Talanta 2025; 284:127277. [PMID: 39608145 DOI: 10.1016/j.talanta.2024.127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Theranostic prodrugs that enable real-time, non-invasive monitoring of drug release and biodistribution are highly desirable for optimizing therapeutic efficacy and guiding personalized medication. Herein, we report a colon-targeted theranostic prodrug system (P1) for the simultaneous delivery and tracking of 5-aminosalicylic acid (5-ASA) in the treatment of ulcerative colitis (UC). P1 comprises a fluorescent 7-amino-4-methylcoumarin (7-AMC) reporter covalently linked to 5-ASA via an azo bond, which quenches the fluorescence of 7-AMC until P1 is activated by azoreductases in the colonic microenvironment. This selective activation triggers the release of 5-ASA and the revival of 7-AMC fluorescence, enabling real-time monitoring of drug delivery. To improve the solubility and targeted delivery of P1, it was encapsulated within polymeric micelles (PM) that selectively adhere to the positively charged, inflamed colonic tissues. In vitro studies confirmed the stability, biocompatibility, and selective activation of P1 under simulated colonic conditions. Notably, in a mouse model of UC, the P1-loaded PM achieved targeted delivery of 5-ASA to the inflamed colon, resulting in effective attenuation of colitis symptoms. Importantly, the in situ activation of P1 allowed for the real-time, non-invasive visualization of drug release and biodistribution, providing valuable insights for treatment optimization. This theranostic prodrug approach offers a promising strategy for the simultaneous therapy and tracking of 5-ASA delivery in UC treatment, with the potential to facilitate personalized medication and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Yingjie Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China
| | - Yuan Wang
- University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yijian Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Wenjing Zhang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Keke Dai
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China
| | - Wujun Geng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and BrainHealth), Wenzhou Medical University, Zhejiang, China.
| | - Sicheng Tang
- University of Chinese Academy of Sciences, Wenzhou Institute, Zhejiang, China.
| |
Collapse
|
2
|
Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: Update 2020. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Rath B, Abul Qais F, Patro R, Mohapatra S, Sharma T. Design, synthesis and molecular modeling studies of novel mesalamine linked coumarin for treatment of inflammatory bowel disease. Bioorg Med Chem Lett 2021; 41:128029. [PMID: 33839254 DOI: 10.1016/j.bmcl.2021.128029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) are continuous idiopathic inflammation of GIT. Ulcerative colitis, inflammation of the colonic or rectal mucosa has no known medical cure and its treatment is aimed at reducing the signs and symptoms associated with the disorders, induction and maintenance of remission. In this study, we have reported the synthesis of mesalamine and coumarin linked together by a diazo group. The compound was characterized by various spectroscopic methods. Therapeutic potential of the synthesized compound was investigated through acetic acid induced ulcerative rat model. Pharmacokinetic properties were predicted for the compounds by ADMET related descriptors. Molecular docking studies were conducted with four proteins (COX-2, MMP-9, TNF-α and MPO) to examine the interaction of mesalamine (MS) and mesalamine coumarin derivative (MS-CU). Moreover, molecular dynamic simulations were carried out to study the dynamics and stability of the complexes in solvent system. The binding energy of MS-CU with MPO, COX-2, MMP-9 and TNF-α was found to be -9.5, -10.4, -9.2 and -8.4 kcal/mol respectively. MS-CU exhibited higher binding affinity towards all tested proteins than MS. Molecular dynamic simulation reveals that both MS and MS-CU formed a stable complex with all test proteins in aqueous system. Overall binding energy of MS-CU was more than MS showing stronger affinity towards the test portions. In conclusion, Mesalamine-coumarin derivative reduces colonic damage in acetic acid induced ulcerative colitis in rat model, and therefore may prove to be effective in the management of IBD.
Collapse
Affiliation(s)
- Biswabhusan Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Randeep Patro
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
4
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
5
|
Regmi S, Pathak S, Nepal MR, Shrestha P, Park J, Kim JO, Yong CS, Choi DY, Chang JH, Jeong TC, Orive G, Yook S, Jeong JH. Inflammation-triggered local drug release ameliorates colitis by inhibiting dendritic cell migration and Th1/Th17 differentiation. J Control Release 2019; 316:138-149. [DOI: 10.1016/j.jconrel.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
|
6
|
Kotla NG, Burke O, Pandit A, Rochev Y. An Orally Administrated Hyaluronan Functionalized Polymeric Hybrid Nanoparticle System for Colon-Specific Drug Delivery. NANOMATERIALS 2019; 9:nano9091246. [PMID: 31480704 PMCID: PMC6780722 DOI: 10.3390/nano9091246] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023]
Abstract
There is a pressing clinical need for advanced colon-specific local drug delivery systems that can provide major advantages in treating diseases associated with the colon, such as inflammatory bowel disease (IBD) and colon cancer. A precise colon targeted drug delivery platform is expected to reduce drug side effects and increase the therapeutic response at the intended disease site locally. In this study, we report the fabrication of hyaluronan (HA) functionalized polymeric hybrid nanoparticulate system (Cur-HA NPs) by using curcumin as a model fluorescent drug. The Cur-HA NPs were about 200–300 nm in size, −51.3 mV overall surface charge after HA functionalization, with 56.0% drug released after 72 h in simulated gastrointestinal fluids. The Cur-HA NPs did not exhibit any cytotoxicity by AlamarBlue, PicoGreen and Live/Dead assays. Following the Cur-HA NPs use on HT-29 monolayer cell cultures demonstrating, the efficacy of HA functionalization increases cellular interaction, uptake when compared to uncoated nanoparticulate system. These findings indicate that HA functionalized nano-hybrid particles are effective in delivering drugs orally to the lower gastrointestinal tract (GIT) in order to treat local colonic diseases.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
| | - Orla Burke
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland.
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| |
Collapse
|
7
|
Abstract
Colon-specific drug delivery is critical for treating diseases of colon, such as colon cancer, amoebiasis, irritable bowel syndrome, and inflammatory bowel disease. This study reviews the effects of targeted oral drug delivery on patient by measuring the accurate administration of the drug to specific disease spot, thus enhancing the therapeutic efficacy and provides better therapeutic outcomes. Medically targeted delivery to colon produces local effect on the diseases and hinders the systemic toxic effects of drugs. The delivery of therapeutics to the specific diseased part of colon has its merits over systemic drug delivery, albeit has some obstacles and problems. Colon drug delivery can be used to create both systemic and local effects. Many advanced approaches are used, such as conventional methods for drug release to colon, delayed release dosage forms, nanoparticles, carbon nanotubes, dendrimers, and alginate coated microparticles. This concise review summarizes and elaborates the details of different techniques and strategies on targeted oral drug delivery to colon as well as studies the advantages, disadvantages, and limitations to improve the application of drug in the part of the affected colon.
Collapse
Affiliation(s)
- Nagina Belali
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Kabul University, Kabul, Afghanistan
| | - Nasrul Wathoni
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
8
|
Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, Rochev Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev 2019; 146:248-266. [PMID: 29966684 DOI: 10.1016/j.addr.2018.06.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/27/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Oral colon-specific delivery systems emerged as the main therapeutic cargos by making a significant impact in the field of modern medicine for local drug delivery in intestinal inflammation. The site-specific delivery of therapeutics (aminosalicylates, glucocorticoids, biologics) to the ulcerative mucus tissue can provide prominent advantages in mucosal healing (MH). Attaining gut mucosal healing and anti-fibrosis are main treatment outcomes in inflammatory bowel disease (IBD). The pharmaceutical strategies that are commonly used to achieve a colon-specific drug delivery system include time, pH-dependent polymer coating, prodrug, colonic microbiota-activated delivery systems and a combination of these approaches. Amongst the different approaches reported, the use of biodegradable polysaccharide coated systems holds great promise in delivering drugs to the ulcerative regions. The present review focuses on major physiological gastro-intestinal tract challenges involved in altering the pharmacokinetics of delivery systems, pathophysiology of MH and fibrosis, reported drug-polysaccharide cargos and focusing on conventional to advanced disease responsive delivery strategies, highlighting their limitations and future perspectives in intestinal inflammation therapy.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland.
| | - Shubhasmin Rana
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Praveen K Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation.
| |
Collapse
|
9
|
Suzuki H. Remarkable diversification of bacterial azoreductases: primary sequences, structures, substrates, physiological roles, and biotechnological applications. Appl Microbiol Biotechnol 2019; 103:3965-3978. [PMID: 30941462 DOI: 10.1007/s00253-019-09775-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Azoreductases reductively cleave azo linkages by using NAD(P)H as an electron donor. The enzymes are widely found in bacteria and act on numerous azo dyes, which allow various unique applications. This review describes primary amino acid sequences, structures, substrates, physiological roles, and biotechnological applications of bacterial azoreductases to discuss their remarkable diversification. According to primary sequences, azoreductases were classified phylogenetically into four main clades. Most members of clades I-III are flavoproteins, whereas clade IV members include flavin-free azoreductases. Clades I and II prefer NADPH and NADH, respectively, as electron donors, whereas other members generally use both. Several enzymes formed no clades; moreover, some bacteria produce azoreductases with longer primary structures than those hitherto identified, which implies further diversification of bacterial azoreductases. The crystal structures commonly reveal the Rossmann folds; however, ternary structures are moderately varied with different quaternary conformation. Although physiological roles are obscure, several azoreductases have been shown to act on metabolites such as flavins, quinones, and metal ions more efficiently than on azo dyes. Considering that many homologs exclusively act on these metabolites, it is possible that azoreductases are actually side activities of versatile reductases that act on various substrates with different specificities. In parallel, this idea raises the possibility that homologous enzymes, even if these are already defined as other types of reductases, widely harbor azoreductase activities. Although azoreductases for which their genes have been identified are not abundant, it may be simple to identify azoreductases of biotechnological importance that have novel substrate specificities.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan. .,Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| |
Collapse
|
10
|
Yan Y, Sun J, Xie X, Wang P, Sun Y, Dong Y, Xing J. Colon-targeting mutual prodrugs of 5-aminosalicylic acid and butyrate for the treatment of ulcerative colitis. RSC Adv 2018; 8:2561-2574. [PMID: 35541446 PMCID: PMC9077470 DOI: 10.1039/c7ra13011b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to design and synthesize four colon-targeting mutual prodrugs of 5-aminosalicylic acid (5-ASA) and butyrate, and evaluate their therapeutic effects on ulcerative colitis.
Collapse
Affiliation(s)
- Yan Yan
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jinyao Sun
- Department of Pharmacy
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | - Xianting Xie
- Department of Pharmacy
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | | | - Ying Sun
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yalin Dong
- Department of Pharmacy
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | - Jianfeng Xing
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|
11
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
12
|
Nour SA, Abdelmalak NS, Naguib MJ. Novel chewable colon targeted tablets of bumadizone calcium for treatment of ulcerative colitis: Formulation and optimization. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|