1
|
Ma L, Sun D, Wen S, Yuan J, Li J, Tan X, Cao S. PSD-95 Protein: A Promising Therapeutic Target in Chronic Pain. Mol Neurobiol 2025; 62:3361-3375. [PMID: 39285025 DOI: 10.1007/s12035-024-04485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/04/2024] [Indexed: 02/04/2025]
Abstract
Chronic pain, as a social public health problem, has a serious impact on the quality of patients' life. Currently, the main drugs used to treat chronic pain are opioids, antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs). But the obvious side effects limit their use, so it is urgent to find new therapeutic targets. Postsynaptic density (PSD)-95 protein plays an important role in the occurrence and development of chronic pain. The over-expression of the PSD-95 protein and its interaction with other proteins are closely related to the chronic pain. Besides, the PSD-95-related drugs that inhibit the expression of PSD-95 as well as the interaction with other protein have been proved to treat chronic pain significantly. In conclusion, although more deep studies are needed in the future, these studies indicate that PSD-95 and the related proteins, such as NMDA receptor (NMDAR) subunit 2B (GluN2B), AMPA receptor (AMPAR), calmodulin-dependent protein kinase II (CaMKII), 5-hydroxytryptamine 2A receptor (5-HT2AR), and neuronal nitric oxide synthase (nNOS), are the promising therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dongdong Sun
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Song Wen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jing Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Song Cao
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
2
|
Hoffer L, Roche P, Morelli X. Rational Design of PDZ Domain Inhibitors: Discovery of Small Organic Compounds Targeting PDZ Domains. Methods Mol Biol 2021; 2256:277-289. [PMID: 34014528 DOI: 10.1007/978-1-0716-1166-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PDZ domains, which belong to protein-protein interaction networks, are critical for regulating important biological processes such as scaffolding, trafficking, and signaling cascades. Interfering with PDZ-mediated interactions could affect these numerous biological processes. Thus, PDZ domains have emerged as promising targets to decipher biological phenomena and potentially treat cancer and neurological diseases. In this minireview, we focus on the discovery and design of small molecule inhibitors to modulate PDZ domains. These compounds interfere with endogenous protein partners from the PDZ domain by binding at the protein-protein interface. While peptides or peptidomimetic ligands were described to modulate PDZ domains, the focus of this review is on small organic compounds.
Collapse
Affiliation(s)
- Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS and Institut Paoli-Calmettes, Marseille, France.
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS and Institut Paoli-Calmettes, Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS and Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
3
|
Javaid S, Saad SM, Zafar H, Malik R, Khan KM, Choudhary MI, Rahman AU. Thymidine phosphorylase and prostrate cancer cell proliferation inhibitory activities of synthetic 4-hydroxybenzohydrazides: In vitro, kinetic, and in silico studies. PLoS One 2020; 15:e0227549. [PMID: 31986186 PMCID: PMC6984732 DOI: 10.1371/journal.pone.0227549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Over-expression of thymidine phosphorylase (TP) plays a key role in many pathological complications, including angiogenesis which leads to cancer cells proliferation. Thus in search of new anticancer agents, a series of 4-hydroxybenzohydrazides (1-29) was synthesized, and evaluated for in vitro thymidine phosphorylase inhibitory activity. Twenty compounds 1-3, 6-14, 16, 19, 22-24, and 27-29 showed potent to weak TP inhibitory activities with IC50 values in the range of 6.8 to 229.5 μM, in comparison to the standards i.e. tipiracil (IC50 = 0.014 ± 0.002 μM) and 7-deazaxanthine (IC50 = 41.0 ± 1.63 μM). Kinetic studies on selected inhibitors 3, 9, 14, 22, 27, and 29 revealed uncompetitive and non-competitive modes of inhibition. Molecular docking studies of these inhibitors indicated that they were able to interact with the amino acid residues present in allosteric site of TP, including Asp391, Arg388, and Leu389. Antiproliferative (cytotoxic) activities of active compounds were also evaluated against mouse fibroblast (3T3) and prostate cancer (PC3) cell lines. Compounds 1, 2, 19, and 22-24 exhibited anti-proliferative activities against PC3 cells with IC50 values between 6.5 to 10.5 μM, while they were largely non-cytotoxic to 3T3 (mouse fibroblast) cells proliferation. Present study thus identifies a new class of dual inhibitors of TP and cancer cell proliferation, which deserves to be further investigated for anti-cancer drug development.
Collapse
Affiliation(s)
- Sumaira Javaid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Muhammad Saad
- H. E. J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rizwana Malik
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atta-ur Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H. E. J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Wattiez AS, Dupuis A, Privat AM, Chalus M, Chapuy E, Aissouni Y, Eschalier A, Courteix C. Disruption of 5-HT 2A-PDZ protein interaction differently affects the analgesic efficacy of SSRI, SNRI and TCA in the treatment of traumatic neuropathic pain in rats. Neuropharmacology 2017; 125:308-318. [PMID: 28780039 DOI: 10.1016/j.neuropharm.2017.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023]
Abstract
Antidepressants remain one of the first line treatments prescribed to neuropathic pain patients despite their limited efficacy and/or their numerous side effects. More and more, pharmacotherapy for neuropathic pain has evolved towards the use of therapeutic combinations. The goal of the present study was to assess the efficacy of the combination of antidepressants - selective serotonin reuptake inhibitors and serotonin-noradrenaline reuptake inhibitors-with a peptide (TAT-2ASCV) able to disrupt the interaction between serotonin type 2A (5-HT2A) receptors and associated PDZ proteins. Mechanical hypersensitivity was assessed in sciatic nerve ligation-induced neuropathic pain in rats using paw pressure test after acute treatment with TAT-2ASCV alone or in combination with repeated treatment with fluoxetine or duloxetine or clomipramine. First, we validated the anti-hyperalgesic effect of TAT-2ASCV on mechanical hypersensitivity at the dose of 100 ng/rat (single i.t. injection). Second, using selective receptor antagonists, we found that the effect of TAT-2ASCV on mechanical hypersensitivity involves 5-HT2A as well as GABAA receptors. Finally, we showed that the association of TAT-2ASCV (100 ng, single i.t. injection) with fluoxetine (10 mg/kg, five i.p. injections) reveals its anti-hyperalgesic effect, while the association with duloxetine (1 mg/kg, five i.p. injections) or clomipramine (2.5 mg/kg, five i.p. injections) is only additive. Those results further accentuate the interest to develop small molecules acting like TAT-2ASCV in order to treat neuropathic pain as a monotherapy or in combination with antidepressants.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Amandine Dupuis
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Anne-Marie Privat
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Maryse Chalus
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Christine Courteix
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
5
|
Discovery of furan carboxylate derivatives as novel inhibitors of ATP-citrate lyase via virtual high-throughput screening. Bioorg Med Chem Lett 2017; 27:929-935. [DOI: 10.1016/j.bmcl.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
|
6
|
Dupuis A, Wattiez AS, Pinguet J, Richard D, Libert F, Chalus M, Aissouni Y, Sion B, Ardid D, Marin P, Eschalier A, Courteix C. Increasing spinal 5-HT 2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release. Pharmacol Res 2016; 118:93-103. [PMID: 27663259 DOI: 10.1016/j.phrs.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/13/2023]
Abstract
Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.
Collapse
Affiliation(s)
- Amandine Dupuis
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | - Anne-Sophie Wattiez
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | - Jérémy Pinguet
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Service de Pharmacologie, Clermont-Ferrand, France
| | - Damien Richard
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Service de Pharmacologie, Clermont-Ferrand, France
| | - Frédéric Libert
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Service de Pharmacologie, Clermont-Ferrand, France
| | - Maryse Chalus
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | - Youssef Aissouni
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | - Benoit Sion
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | - Denis Ardid
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier Cedex 5, France
| | - Alain Eschalier
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Service de Pharmacologie, Clermont-Ferrand, France
| | - Christine Courteix
- INSERM, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
7
|
Vogrig A, Dorr L, Bouzidi N, Boucherle B, Wattiez AS, Cassier E, Vallon G, Ripoche I, Abrunhosa-Thomas I, Marin P, Nauton L, Thery V, Courteix C, Lian LY, Ducki S. Structure-based design of PDZ ligands as inhibitors of 5-HT(2A) receptor/PSD-95 PDZ1 domain interaction possessing anti-hyperalgesic activity. ACS Chem Biol 2013; 8:2209-16. [PMID: 23895101 DOI: 10.1021/cb400308u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disrupting the interaction between the PDZ protein PSD-95 and the C-terminal domain of the 5-HT2A serotonin receptor has been shown to reduce hyperalgesia in a rodent model of neuropathic pain. Here, we designed and synthesized PDZ ligands capable of binding to the first PDZ domain (PDZ1) of the PSD-95 protein and evaluated their biological activity in vitro and in vivo. A series of substituted indoles was identified by docking simulations, and six novel analogues were synthesized. Three analogues displayed strong interactions with the first PDZ domain (PDZ1) of PDZ-95 in (1)H-(15)N heteronuclear single-quantum coherence (HSQC) experiments and two of them were able to inhibit the interaction between PSD-95 and the 5-HT2A receptor in vitro. We identified compound 8b as the analogue able to significantly suppress mechanical hyperalgesia in an experimental model of traumatic neuropathic pain in the rat. This effect was suppressed by the coadministration of the 5-HT2A receptor antagonist M100907, consistent with an inhibitory effect upon 5-HT2A receptor/PSD-95 interaction. Finally, we determined an NMR-restraint driven model structure for the PSD95 PDZ1/8b complex, which confirms that indole 8b binds to the putative PDZ-ligand binding site.
Collapse
Affiliation(s)
- Alexandre Vogrig
- Clermont Université, Université Blaise Pascal, Institut de Chimie
de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Liam Dorr
- NMR Centre for Structural Biology, University of Liverpool, L6972B Liverpool, U.K
| | - Naoual Bouzidi
- Clermont Université, Université Blaise Pascal, Institut de Chimie
de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Benjamin Boucherle
- Clermont Université, Université Blaise Pascal, Institut de Chimie
de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Anne-Sophie Wattiez
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale
et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, UMR1107, Neuro-Dol, F-63001 Clermont-Ferrand, France
| | - Elisabeth Cassier
- Institut de Génomique Fonctionalle, CNRS UMR5203 − INSERM U661, Universités Montpellier 1&2, F-34094 Montpellier, France
| | - Gary Vallon
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
- Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448,
F-63000 Clermont-Ferrand, France
| | - Isabelle Ripoche
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
- Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448,
F-63000 Clermont-Ferrand, France
| | - Isabelle Abrunhosa-Thomas
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
- Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448,
F-63000 Clermont-Ferrand, France
| | - Philippe Marin
- Institut de Génomique Fonctionalle, CNRS UMR5203 − INSERM U661, Universités Montpellier 1&2, F-34094 Montpellier, France
| | - Lionel Nauton
- Clermont Université, Université Blaise Pascal, Institut de Chimie
de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Vincent Thery
- Clermont Université, Université Blaise Pascal, Institut de Chimie
de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Christine Courteix
- Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale
et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
- Inserm, UMR1107, Neuro-Dol, F-63001 Clermont-Ferrand, France
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, University of Liverpool, L6972B Liverpool, U.K
| | - Sylvie Ducki
- CNRS, UMR6296, ICCF, F-63171 Aubiere, France
- Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448,
F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Disruption of 5-HT2A receptor-PDZ protein interactions alleviates mechanical hypersensitivity in carrageenan-induced inflammation in rats. PLoS One 2013; 8:e74661. [PMID: 24058620 PMCID: PMC3776748 DOI: 10.1371/journal.pone.0074661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
Despite common pathophysiological mechanisms, inflammatory and neuropathic pain do not respond equally to the analgesic effect of antidepressants, except for selective serotonin reuptake inhibitors (SSRIs), which show a limited efficacy in both conditions. We previously demonstrated that an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and its associated PDZ proteins (e.g. PSD-95) reveals a 5-HT2A receptor-mediated anti-hyperalgesic effect and enhances the efficacy of fluoxetine (a SSRI) in diabetic neuropathic pain conditions in rats. Here, we have examined whether the same strategy would be useful to treat inflammatory pain. Sub-chronic inflammatory pain was induced by injecting λ-carrageenan (100 µl, 2%) into the left hind paw of the rat. Mechanical hyperalgesia was assessed after acute treatment with TAT-2ASCV or/and fluoxetine (SSRI) 2.5 h after λ-carrageenan injection. Possible changes in the level of 5-HT2A receptors and its associated PDZ protein PSD-95 upon inflammation induction were quantified by Western blotting in dorsal horn spinal cord. Administration of TAT-2ASCV peptide (100 ng/rat, intrathecally) but not fluoxetine (10 mg/kg, intraperitoneally) relieves mechanical hyperalgesia (paw pressure test) in inflamed rats. This anti-hyperalgesic effect involves spinal 5-HT2A receptors and GABAergic interneurons as it is abolished by a 5-HT2A antagonist (M100907, 150 ng/rat, intrathecally) and a GABAA antagonist, (bicuculline, 3 µg/rat, intrathecally). We also found a decreased expression of 5-HT2A receptors in the dorsal spinal cord of inflamed animals which could not be rescued by TAT-2ASCV injection, while the amount of PSD-95 was not affected by inflammatory pain. Finally, the coadministration of fluoxetine does not further enhance the anti-hyperalgesic effect of TAT-2ASCV peptide. This study reveals a role of the interactions between 5-HT2A receptors and PDZ proteins in the pathophysiological pathways of inflammatory pain and opens new perspectives in its control thanks to molecules disrupting 5-HT2A receptor/PDZ protein interactions.
Collapse
|