1
|
Qunies AM, Mishra NM, Spitznagel BD, Du Y, Acuña VS, David Weaver C, Emmitte KA. Structure-activity relationship studies in a new series of 2-amino-N-phenylacetamide inhibitors of Slack potassium channels. Bioorg Med Chem Lett 2022; 76:129013. [PMID: 36184030 PMCID: PMC10230575 DOI: 10.1016/j.bmcl.2022.129013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
In this Letter we describe structure-activity relationship (SAR) studies conducted in five distinct regions of a new 2-amino-N-phenylacetamides series of Slack potassium channel inhibitors exemplified by recently disclosed high-throughput screening (HTS) hit VU0606170 (4). New analogs were screened in a thallium (Tl+) flux assay in HEK-293 cells stably expressing wild-type human (WT) Slack. Selected analogs were screened in Tl+ flux versus A934T Slack and other Slo family members Slick and Maxi-K and evaluated in whole-cell electrophysiology (EP) assays using an automated patch clamp system. Results revealed the series to have flat SAR with significant structural modifications resulting in a loss of Slack activity. More minor changes led to compounds with Slack activity and Slo family selectivity similar to the HTS hit.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Valerie S Acuña
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Zabolotna Y, Volochnyuk DM, Ryabukhin SV, Horvath D, Gavrilenko KS, Marcou G, Moroz YS, Oksiuta O, Varnek A. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. J Chem Inf Model 2021; 62:2171-2185. [PMID: 34928600 DOI: 10.1021/acs.jcim.1c00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to efficiently synthesize desired compounds can be a limiting factor for chemical space exploration in drug discovery. This ability is conditioned not only by the existence of well-studied synthetic protocols but also by the availability of corresponding reagents, so-called building blocks (BBs). In this work, we present a detailed analysis of the chemical space of 400 000 purchasable BBs. The chemical space was defined by corresponding synthons─fragments contributed to the final molecules upon reaction. They allow an analysis of BB physicochemical properties and diversity, unbiased by the leaving and protective groups in actual reagents. The main classes of BBs were analyzed in terms of their availability, rule-of-two-defined quality, and diversity. Available BBs were eventually compared to a reference set of biologically relevant synthons derived from ChEMBL fragmentation, in order to illustrate how well they cover the actual medicinal chemistry needs. This was performed on a newly constructed universal generative topographic map of synthon chemical space that enables visualization of both libraries and analysis of their overlapped and library-specific regions.
Collapse
Affiliation(s)
- Yuliana Zabolotna
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Sergey V Ryabukhin
- The Institute of High Technologies, Kyiv National Taras Shevchenko University, 64 Volodymyrska Street, Kyiv 01601, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Dragos Horvath
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Konstantin S Gavrilenko
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Gilles Marcou
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Yurii S Moroz
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Oleksandr Oksiuta
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alexandre Varnek
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
3
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
4
|
Abstract
Cubane is a highly strained saturated hydrocarbon system that has historically been of interest in theoretical organic chemistry. More recently it has become a molecule of interest for biological applications due to its inherent stability and limited toxicity. Of greater significance is the ability to potentially functionalize cubane at each of its carbon atoms, providing complex biologically active molecules with unique spatial arrangements for probing active sites. These characteristics have led to an increased use of cubane in pharmaceutically relevant molecules. In this Perspective we describe synthetic methodology for accessing a range of functionalized cubanes and their applications in pharmaceuticals. We also provide some perspectives on challenges and future directions in the advancement of this field.
Collapse
Affiliation(s)
- Tristan A Reekie
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences , University of Queensland , Brisbane , QLD 4072 , Australia
| | - Louis M Rendina
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Michael Kassiou
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
5
|
Millet A, Lefebvre Q, Rueping M. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins. Chemistry 2016; 22:13464-8. [PMID: 27321136 DOI: 10.1002/chem.201602257] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 12/14/2022]
Abstract
A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins.
Collapse
Affiliation(s)
- Anthony Millet
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Quentin Lefebvre
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany. .,KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
O'Reilly MC, Scott SA, Brown HA, Lindsley CW. Further evaluation of novel structural modifications to scaffolds that engender PLD isoform selective inhibition. Bioorg Med Chem Lett 2014; 24:5553-5557. [PMID: 25466173 DOI: 10.1016/j.bmcl.2014.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
This Letter describes the on-going SAR efforts based on two scaffolds, a PLD1-biased piperidinyl benzimidazolone and a PLD2-biased piperidinyl triazaspirone, with the goal of enhancing PLD inhibitory potency and isoform selectivity. Here, we found that addition of an α-methyl moiety within the PLD2-biased piperidinyl triazaspirone scaffold abolished PLD2 preference, while the incorporation of substituents onto the piperidine moiety of the PLD1-biased piperidinyl benzimidazolone, or replacement with a bioisosteric [3.3.0] core, generally retained PLD1 preference, but at diminished significance. The SAR uncovered within these two allosteric PLD inhibitor series further highlights the inherent challenges of developing isoform selective PLD inhibitors.
Collapse
Affiliation(s)
- Matthew C O'Reilly
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University/ Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Cho HP, Engers DW, Venable DF, Niswender CM, Lindsley CW, Conn PJ, Emmitte KA, Rodriguez AL. A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chem Neurosci 2014; 5:597-610. [PMID: 24798819 DOI: 10.1021/cn5000343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the discovery of mGlu₁ allosteric modulators has suggested the modulation of mGlu₁ could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu₁ modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu₁ negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu₁ chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu₁ but was, surprisingly, inactive at human mGlu₁. VU0410425 and a set of chemically diverse mGlu₁ negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu₁ activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu₁ negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu₁ activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu₁.
Collapse
Affiliation(s)
| | | | | | | | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Kyle A. Emmitte
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
8
|
Sheffler DJ, Nedelcovych MT, Williams R, Turner SC, Duerk BB, Robbins MR, Jadhav SB, Niswender CM, Jones CK, Conn PJ, Daniels RN, Lindsley CW. Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 2: development of a [3.3.0]-based series and other piperidine bioisosteres. Bioorg Med Chem Lett 2014; 24:1062-6. [PMID: 24462664 PMCID: PMC3951244 DOI: 10.1016/j.bmcl.2014.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
Abstract
This Letter describes the development and SAR of a novel series of GlyT1 inhibitors derived from a scaffold hopping approach, in lieu of an HTS campaign, which provided intellectual property position. Members within this new [3.3.0]-based series displayed excellent GlyT1 potency, selectivity, free fraction, and modest CNS penetration. Moreover, enantioselective GlyT1 inhibition was observed, within this novel series and a number of other piperidine bioisosteric cores.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Michael T Nedelcovych
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Richard Williams
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Stephen C Turner
- Department of Pharmaceutical Sciences, Lipscomb University, College of Pharmacy and Health Sciences, Nashville, TN 37024-3951, USA
| | - Brittany B Duerk
- Department of Pharmaceutical Sciences, Lipscomb University, College of Pharmacy and Health Sciences, Nashville, TN 37024-3951, USA
| | - Megan R Robbins
- Department of Pharmaceutical Sciences, Lipscomb University, College of Pharmacy and Health Sciences, Nashville, TN 37024-3951, USA
| | - Sataya B Jadhav
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA
| | - R Nathan Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmaceutical Sciences, Lipscomb University, College of Pharmacy and Health Sciences, Nashville, TN 37024-3951, USA.
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Li BL, Hu HC, Mo LP, Zhang ZH. Nano CoFe2O4 supported antimony(iii) as an efficient and recyclable catalyst for one-pot three-component synthesis of multisubstituted pyrroles. RSC Adv 2014. [DOI: 10.1039/c3ra47855f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A novel magnetic nano-CoFe2O4 supported Sb ([CoFe2O4@SiO2-DABCO-Sb]) was successfully constructed and identified as an efficient catalyst for synthesis of multisubstituted pyrroles via one-pot three-component reaction of amines, nitroolefin and 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Bao-Le Li
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024, China
| | - Hai-Chuan Hu
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024, China
| | - Li-Ping Mo
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024, China
| | - Zhan-Hui Zhang
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024, China
| |
Collapse
|