1
|
Osman AMA, Arabi AA. Average Electron Density: A Quantitative Tool for Evaluating Non-Classical Bioisosteres of Amides. ACS OMEGA 2024; 9:13172-13182. [PMID: 38524460 PMCID: PMC10955596 DOI: 10.1021/acsomega.3c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
Bioisosterism is strategically used in drug design to enhance the pharmacokinetic and pharmacodynamic properties of therapeutic molecules. The average electron density (AED) tool has been used in several studies to quantify similarities among nonclassical bioisosteres of carboxylic acid. In this study, the AED tool is used to quantify the similarities among nonclassical bioisosteres of an amide group. In particular, amide-to-1,2,3-triazole bioisosterism is considered. To evaluate the AED differences exhibited by isomers of nonclassical bioisosteres, both isomers of amide (cis and trans) and 1,2,3-triazole (1,4 and 1,5 disubstituted moieity) were considered. The amide and 1,2,3-triazole bioisosteric moieties were capped with various R groups (R= methyl, hydrogen, and chloro) to account for changes in their environment. Amide-to-triazole bioisosteric substitutions were then explored in a more realistic environment, that is, within the FDA-approved anticancer imatinib drug. The AED tool effectively identified similarities between substantially different moieties, 1,2,3-triazole and amide, showing AED differences of no more than 4%. The AED tool was also proven to be useful in evaluating the contribution of various factors affecting triazole-amide bioisosterism including isomerism and changes in their environment. The AED values of each bioisostere were transferable within a maximum difference of 2.6%, irrespective of the change in environment. The 1,4- and 1,5-disubstituted isomers of 1,2,3-triazole have AED values that differ by less than unity, 0.52%. Similarly, the AED values of the cis- and trans-amide isomers differ by only 1.31%. Overall, the AED quantitative tool not only replicated experimental observations regarding similarities in bioisosteres, but also explained and quantified each contributing factor. This demonstrates the extended utility of the AED tool from nonclassical carboxylic acid bioisosteres to amide equivalents.On the contrary, electrostatic potential maps, usually used in the literature to qualitatively evaluate bioisosterism, were not similar for the 1,2,3-triazole and amide bioisosteres, under different environments. Overall, the AED tool proves to be powerful in quantitatively evaluating and predicting bioisosterism across diverse moieties considering structural and environmental variations, making it valuable in drug design.
Collapse
Affiliation(s)
- Alaa MA Osman
- College of Medicine and Health
Sciences, Department of Biochemistry and Molecular Biology, United Arab Emirates University, AlAin P.O. Box: 15551, United Arab Emirates
| | - Alya A. Arabi
- College of Medicine and Health
Sciences, Department of Biochemistry and Molecular Biology, United Arab Emirates University, AlAin P.O. Box: 15551, United Arab Emirates
| |
Collapse
|
2
|
Hohenwarter L, Böttger R, Li SD. Modification and Delivery of Enkephalins for Pain Modulation. Int J Pharm 2023; 646:123425. [PMID: 37739096 DOI: 10.1016/j.ijpharm.2023.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Chronic pain negatively affects patient's quality of life and poses a significant economic burden. First line pharmaceutical treatment of chronic pain, including NSAIDs or antidepressants, is often inefficient to reduce pain, or produces intolerable adverse effects. In such cases, opioids are frequently prescribed for their potent analgesia, but chronic opioid use is also frequently associated with debilitating side effects that may offset analgesic benefits. Nonetheless, opioids continue to be widely utilized due to the lack of effective alternative analgesics. Since their discovery in 1975, a class of endogenous opioids called enkephalins (ENKs) have been investigated for their ability to relieve pain with significantly reduced adverse effects compared to conventional opioids. Their low metabolic stability and inability to cross biological membranes, however, make ENKs ineffective analgesics. Over past decades, much effort has been invested to overcome these limitations and develop ENK-based pain therapies. This review summarizes and describes chemical modifications and ENK delivery technologies utilizing ENK conjugates, nanoparticles and ENK gene delivery approaches and discusses valid lessons, challenges, and future directions of this evolving field.
Collapse
Affiliation(s)
- Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
3
|
Raju C, Mridula K, Srinivasan N, Kunnikuruvan S, Sureshan KM. Topochemical Syntheses of Polyarylopeptides Involving Large Molecular Motions: Frustrated Monomer Packing Leads to the Formation of Polymer Blends. Angew Chem Int Ed Engl 2023; 62:e202306504. [PMID: 37486334 DOI: 10.1002/anie.202306504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
We report the topochemical syntheses of three polyarylopeptides, wherein triazolylphenyl group is integrated into the backbone of peptide chains. We synthesized three different monomers having azide and arylacetylene as end-groups from glycine, L-alanine and L-valine. We crystallized these monomers and the crystal structures of two of them were determined by single-crystal X-ray diffractometry. Due to the steric constraints, both of these monomers crystallized with two molecules, viz. conformers A and B, in the asymmetric unit. Consistently, in both cases, the A-conformers are antiparallelly π-stacked and B-conformers are parallelly slip-stacked, exploiting weak interactions. Though the arrangements of molecules in the pristine crystals were unsuitable for topochemical reaction, upon heating, they undergo large motion inside the crystal lattice to reach a transient reactive orientation and thereby the self-sorted conformer stacks react to give a blend of triazole-linked polyarylopeptides having two different linkages. Due to the large molecular motion inside crystals, the product phase loses its crystallinity.
Collapse
Affiliation(s)
- Cijil Raju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Kozhukunnon Mridula
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Nikitha Srinivasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sooraj Kunnikuruvan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- Centre for Atomistic Modelling and Materials Design and Centre for Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
4
|
Guarrochena X, Kaudela B, Mindt TL. Automated solid-phase synthesis of metabolically stabilized triazolo-peptidomimetics. J Pept Sci 2023; 29:e3488. [PMID: 36912359 PMCID: PMC10909554 DOI: 10.1002/psc.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
The use of 1,4-disubstituted 1,2,3-triazoles as trans-amide bond surrogates has become an important tool for the synthesis of metabolically stabilized peptidomimetics. These heterocyclic bioisosters are generally incorporated into the peptide backbone by applying a diazo-transfer reaction followed by CuAAC (click chemistry) with an α-amino alkyne. Even though the manual synthesis of backbone-modified triazolo-peptidomimetics has been reported by us and others, no procedure has yet been described for an automated synthesis using peptide synthesizers. In order to efficiently adapt these reactions to an automated setup, different conditions were explored, putting special emphasis on the required long-term stability of both the diazo-transfer reagent and the Cu(I) catalyst in solution. ISA·HCl is the reagent of choice to accomplish the diazo-transfer reaction; however, it was found instable in DMF, the most commonly used solvent for SPPS. Thus, an aqueous solution of ISA·HCl was used to prevent its degradation over time, and the composition in the final diazo-transfer reaction was adjusted to preserve suitable swelling conditions of the resins applied. The CuAAC reaction was performed without difficulties using [Cu (CH3 CN)4 ]PF6 as a catalyst and TBTA as a stabilizer to prevent oxidation to Cu(II). The optimized automated two-step procedure was applied to the synthesis of structurally diverse triazolo-peptidomimetics to demonstrate the versatility of the developed methodology. Under the optimized conditions, five triazolo-peptidomimetics (8-5 amino acid residues) were synthesized efficiently using two different resins. Analysis of the crude products by HPLC-MS revealed moderate to good purities of the desired triazolo-peptidomimetics (70-85%). The synthesis time ranged between 9 and 12.5 h.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna, Medical University of ViennaViennaAustria
| | - Barbara Kaudela
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
| | - Thomas L. Mindt
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna, Medical University of ViennaViennaAustria
| |
Collapse
|
5
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
Grob N, Schibli R, Béhé M, Valverde IE, Mindt TL. 1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs. ACS Med Chem Lett 2021; 12:585-592. [PMID: 33859799 PMCID: PMC8040048 DOI: 10.1021/acsmedchemlett.0c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
1,5-Disubstituted 1,2,3-triazoles (1,5-Tz) are considered bioisosteres of cis-amide bonds. However, their use for enhancing the pharmacological properties of peptides or proteins is not yet well established. Aiming to illustrate their utility, we chose the peptide conjugate [Nle15]MG11 (DOTA-dGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2) as a model compound since it is known that the cholecystokinin-2 receptor (CCK2R) is able to accommodate turn conformations. Analogs of [Nle15]MG11 incorporating 1,5-Tz in the backbone were synthesized and radiolabeled with lutetium-177, and their pharmacological properties (cell internalization, receptor binding affinity and specificity, plasma stability, and biodistribution) were evaluated and compared with [Nle15]MG11 as well as their previously reported analogs bearing 1,4-disubstituted 1,2,3-triazoles. Our investigations led to the discovery of novel triazole-modified analogs of [Nle15]MG11 with nanomolar CCK2R-binding affinity and 2-fold increased tumor uptake. This study illustrates that substitution of amides by 1,5-disubstituted 1,2,3-triazoles is an effective strategy to enhance the pharmacological properties of biologically active peptides.
Collapse
Affiliation(s)
- Nathalie
M. Grob
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zürich, Switzerland
| | - Roger Schibli
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zürich, Switzerland
- Center
for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Béhé
- Center
for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ibai E. Valverde
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Thomas L. Mindt
- Ludwig
Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Rečnik LM, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules 2020; 25:E3576. [PMID: 32781656 PMCID: PMC7465391 DOI: 10.3390/molecules25163576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Thomas L. Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Stefanucci A, Lei W, Pieretti S, Novellino E, Dimmito MP, Marzoli F, Streicher JM, Mollica A. On resin click-chemistry-mediated synthesis of novel enkephalin analogues with potent anti-nociceptive activity. Sci Rep 2019; 9:5771. [PMID: 30962495 PMCID: PMC6453917 DOI: 10.1038/s41598-019-42289-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/20/2019] [Indexed: 11/22/2022] Open
Abstract
Here, we report the chemical synthesis of two DPDPE analogues 7a (NOVA1) and 7b (NOVA2). This entailed the solid-phase synthesis of two enkephalin precursor chains followed by a CuI-catalyzed azide-alkyne cycloaddition, with the aim of improving in vivo analgesic efficacy versus DPDPE. NOVA2 showed good affinity and selectivity for the μ-opioid receptor (KI of 59.2 nM, EC50 of 12.9 nM, EMax of 87.3%), and long lasting anti-nociceptive effects in mice when compared to DPDPE.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Francesca Marzoli
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161, Rome, Italy
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
9
|
Beaudeau JL, Blais V, Holleran BJ, Bergeron A, Piñeyro G, Guérin B, Gendron L, Dory YL. N-Guanidyl and C-Tetrazole Leu-Enkephalin Derivatives: Efficient Mu and Delta Opioid Receptor Agonists with Improved Pharmacological Properties. ACS Chem Neurosci 2019; 10:1615-1626. [PMID: 30614675 DOI: 10.1021/acschemneuro.8b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leu-enkephalin and d-Ala2-Leu-enkephalin were modified at their N- and C-termini with guanidyl and tetrazole groups. The resulting molecules were prepared in solution or by solid phase peptide synthesis. The affinity of the different analogues at mu (MOP) and delta opioid receptors (DOP) was then assessed by competitive binding in stably transfected DOP and MOP HEK293 cells. Inhibition of cAMP production and recruitment of β-arrestin were also investigated. Finally, lipophilicity (logD7.4) and plasma stability of each compound were measured. Compared to the native ligands, we found that the replacement of the terminal carboxylate by a tetrazole slightly decreased both the affinity at mu and delta opioid receptors as well as the half-life. By contrast, replacing the ammonium at the N-terminus with a guanidyl significantly improved the affinity, the potency, as well as the lipophilicity and the stability of the resulting peptides. Replacing the glycine residue with a d-alanine in position 2 consistently improved the potency as well as the stability of the analogues. The best peptidomimetic of the whole series, guanidyl-Tyr-d-Ala-Gly-Phe-Leu-tetrazole, displayed sub-nanomolar affinity and an increased lipophilicity. Moreover, it proved to be stable in plasma for up to 24 h, suggesting that the modifications are protecting the compound against protease degradation.
Collapse
Affiliation(s)
| | | | | | | | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
10
|
Ben Haj Salah K, Das S, Ruiz N, Andreu V, Martinez J, Wenger E, Amblard M, Didierjean C, Legrand B, Inguimbert N. How are 1,2,3-triazoles accommodated in helical secondary structures? Org Biomol Chem 2019; 16:3576-3583. [PMID: 29693098 DOI: 10.1039/c8ob00686e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1,4-Disubstituted-1,2,3-triazole (Tz) is widely used in peptides as a trans-amide bond mimic, despite having hazardous effects on the native peptide activity. The impact of amide bond substitution by Tz on peptide secondary structures is scarcely documented. We performed a Tz scan, by systematically replacing peptide bonds following the Aib residues with Tz on two model peptaibols: alamethicin F50/5 and bergofungin D, which adopt stable α- and 310 helices, respectively. We observed that the Tz insertion, whatever its position in the peptide sequences, abolished their antimicrobial activity. The structural consequences of this insertion were further investigated using CD, NMR and X-ray diffraction. Importantly, five crystal structures that were incorporated with Tz were solved, showing various degrees of alteration of the helical structures, from minor structural perturbation of the helix to partial disorder. Together, these results showed that Tz insertions impair helical secondary structures.
Collapse
Affiliation(s)
- Khoubaib Ben Haj Salah
- USR 3278 CRIOBE, PSL Research University, EPHE-UPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence «CORAIL». Bâtiment T, 58 avenue P. Alduy, 66860 Perpignan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kinena L, Leitis G, Kanepe-Lapsa I, Bobrovs R, Jaudzems K, Ozola V, Suna E, Jirgensons A. Azole-based non-peptidomimetic plasmepsin inhibitors. Arch Pharm (Weinheim) 2018; 351:e1800151. [DOI: 10.1002/ardp.201800151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Linda Kinena
- Latvian Institute of Organic Synthesis; Riga Latvia
| | | | | | | | | | - Vita Ozola
- Latvian Institute of Organic Synthesis; Riga Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis; Riga Latvia
| | | |
Collapse
|
12
|
Leite DI, Fontes FDV, Bastos MM, Hoelz LVB, Bianco MDCAD, de Oliveira AP, da Silva PB, da Silva CF, Batista DDGJ, da Gama ANS, Peres RB, Villar JDF, Soeiro MDNC, Boechat N. New 1,2,3-triazole-based analogues of benznidazole for use against Trypanosoma cruzi infection: In vitro and in vivo evaluations. Chem Biol Drug Des 2018; 92:1670-1682. [PMID: 29745048 DOI: 10.1111/cbdd.13333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/09/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
Abstract
Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease.
Collapse
Affiliation(s)
- Débora Inácio Leite
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pos-Graduação em Farmacologia e Quimica Medicinal do Instituto de Ciencias Biomedicas - ICB- UFRJ, Centro de Ciências da Saúde - CCS, Rio de Janeiro, Brasil
| | - Fábio de Vasconcellos Fontes
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Ciencia e Tecnologia, Praça General Tiburcio, Instituto Militar de Engenharia, Rio de Janeiro, Brasil
| | - Monica Macedo Bastos
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pos-Graduação em Farmacologia e Quimica Medicinal do Instituto de Ciencias Biomedicas - ICB- UFRJ, Centro de Ciências da Saúde - CCS, Rio de Janeiro, Brasil
| | - Lucas Villas Boas Hoelz
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria da Conceição Avelino Dias Bianco
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pos-Graduação em Farmacologia e Quimica Medicinal do Instituto de Ciencias Biomedicas - ICB- UFRJ, Centro de Ciências da Saúde - CCS, Rio de Janeiro, Brasil
| | - Andressa Paula de Oliveira
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pos-Graduação em Farmacologia e Quimica Medicinal do Instituto de Ciencias Biomedicas - ICB- UFRJ, Centro de Ciências da Saúde - CCS, Rio de Janeiro, Brasil.,PROBIN - Abeu - Centro Universitario UNIABEU, Belford Roxo, Rio de Janeiro, Brasil
| | | | - Cristiane França da Silva
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz - IOC, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Denise da Gama Jean Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz - IOC, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Raiza Brandão Peres
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz - IOC, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Daniel Figueroa Villar
- Departamento de Ciencia e Tecnologia, Praça General Tiburcio, Instituto Militar de Engenharia, Rio de Janeiro, Brasil
| | | | - Nubia Boechat
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - Fiocruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pos-Graduação em Farmacologia e Quimica Medicinal do Instituto de Ciencias Biomedicas - ICB- UFRJ, Centro de Ciências da Saúde - CCS, Rio de Janeiro, Brasil
| |
Collapse
|
13
|
Bella Ndong D, Blais V, Holleran BJ, Proteau-Gagné A, Cantin-Savoie I, Robert W, Nadon JF, Beauchemin S, Leduc R, Piñeyro G, Guérin B, Gendron L, Dory YL. Exploration of the fifth position of leu-enkephalin and its role in binding and activating delta (DOP) and mu (MOP) opioid receptors. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dominique Bella Ndong
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Véronique Blais
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Brian J. Holleran
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Arnaud Proteau-Gagné
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Isabelle Cantin-Savoie
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - William Robert
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Jean-François Nadon
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Sophie Beauchemin
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Richard Leduc
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine; Université de Montréal; Montreal Québec Canada
| | - Brigitte Guérin
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Louis Gendron
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| | - Yves L. Dory
- Institut de Pharmacologie, Université de Sherbrooke, 3001 12 av. Nord; Sherbrooke Québec J1H 5N4 Canada
- Département de Chimie, Facult des Sciences; Université de Sherbrooke; Sherbrooke Québec Canada
- Centre de recherche du CHU de Sherbrooke; Sherbrooke Québec Canada
| |
Collapse
|
14
|
Kracker O, Góra J, Krzciuk-Gula J, Marion A, Neumann B, Stammler HG, Nieß A, Antes I, Latajka R, Sewald N. 1,5-Disubstituted 1,2,3-Triazole-Containing Peptidotriazolamers: Design Principles for a Class of Versatile Peptidomimetics. Chemistry 2017; 24:953-961. [PMID: 29160605 DOI: 10.1002/chem.201704583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Peptidotriazolamers are hybrid foldamers combining features of peptides and triazolamers-repetitive peptidomimetic structures with triazoles replacing peptide bonds. We report on the synthesis of a new class of peptidomimetics, containing 1,5-disubstituted 1,2,3-triazoles in an alternating fashion with amide bonds and the analysis of their conformation in solid state and solution. Homo- or heterochiral peptidotriazolamers were obtained from enantiomerically pure propargylamines with stereogenic centers in the propargylic position and α-azido esters by ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) under microwave conditions in high yields. With such building blocks the peptidotriazolamers are readily available by solution phase synthesis. While the conformation of the homochiral peptidotriazolamer Boc-Ala[5Tz]Phe-Val[5Tz]Ala-Leu[5Tz]Val-OBzl resembles that of a β VIa1 turn, the heterochiral peptidotriazolamer Boc-d-Ala[5Tz]Phe-d-Val[5Tz]Ala-d-Leu[5Tz]Val-OBzl adopts a polyproline-like repetitive structure.
Collapse
Affiliation(s)
- Oliver Kracker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Jerzy Góra
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany.,Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Joanna Krzciuk-Gula
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany.,Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Antoine Marion
- Center for Integrated Protein Science, Department of Biosciences, TU Munich, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany
| | - Beate Neumann
- Inorganic and Structural Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Hans-Georg Stammler
- Inorganic and Structural Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Anke Nieß
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Iris Antes
- Center for Integrated Protein Science, Department of Biosciences, TU Munich, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
15
|
Engel-Andreasen J, Wellhöfer I, Wich K, Olsen CA. Backbone-Fluorinated 1,2,3-Triazole-Containing Dipeptide Surrogates. J Org Chem 2017; 82:11613-11619. [PMID: 28985056 DOI: 10.1021/acs.joc.7b01744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 1,2,3-triazole moiety can be incorporated as a peptide bond bioisostere to provide protease resistance in peptidomimetics. Herein, we report the synthesis of peptidomimetic building blocks containing backbone-fluorinated 1,4-disubstituted 1,2,3-triazole moieties. Synthetic protocols for the preparation of various Xaa-Gly dipeptide surrogates in the form of Xaa-ψ[triazole]-F2Gly building blocks were established, and selected examples were introduced into the endogenous peptide opioid receptor ligand Leu-enkephalin as a model compound.
Collapse
Affiliation(s)
- Jens Engel-Andreasen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Isabelle Wellhöfer
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kathrine Wich
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Kushwaha K, Vashist M, Chand M, Jain SC. Cu(I)-Catalyzed Regioselective and Highly Efficient One-Pot Synthesis of Novel 1,2,3-Triazoles Decorated with Pyridine and Heterocyclic Amines. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khushbu Kushwaha
- Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Monika Vashist
- Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Mahesh Chand
- Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Subhash C. Jain
- Department of Chemistry; University of Delhi; Delhi 110 007 India
| |
Collapse
|
17
|
Ben Haj Salah K, Legrand B, Das S, Martinez J, Inguimbert N. Straightforward strategy to substitute amide bonds by 1,2,3-triazoles in peptaibols analogs using Aibψ[Tz]-Xaa dipeptides. Biopolymers 2016; 104:611-21. [PMID: 25784277 DOI: 10.1002/bip.22641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 02/04/2023]
Abstract
Structured peptides gained more attention over a decade because of their biological properties, biocompatibility and ability to act as modulators of protein/protein interactions, antibiotics, analgesics, immunosuppressants or as imaging agents to cite a few relevant applications. However, their poor bioavalability due in part to the susceptibility of the peptide bond to proteolytic cleavages often impaired their development and considerably limited their therapeutic use. To circumvent these problems, many efforts are undertaken to discover stable amide bond mimics resistant to proteolytic degradation. Among them the 1,2,3-triazole emerged as a highly stable analogue of the trans-peptide bond to generate bioactive peptides. Here we report a convenient approach to readily substitute amide bonds by triazole rings in Aib-containing peptides using Aibψ[Tz]-Xaa dipeptide-like units. We defined their application in solid phase synthesis and generated short model peptide sequences to study the impact of the triazole incorporation on their conformations in solution by circular dichroism and nuclear magnetic resonance spectroscopies.
Collapse
Affiliation(s)
- Khoubaib Ben Haj Salah
- Université de Perpignan Via Domitia, Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), USR CNRS 3278, centre de phytopharmacie, bâtiment T, 58 avenue P. Alduy, 66860, Perpignan, France
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Sanjit Das
- Université de Perpignan Via Domitia, Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), USR CNRS 3278, centre de phytopharmacie, bâtiment T, 58 avenue P. Alduy, 66860, Perpignan, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Nicolas Inguimbert
- Université de Perpignan Via Domitia, Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), USR CNRS 3278, centre de phytopharmacie, bâtiment T, 58 avenue P. Alduy, 66860, Perpignan, France
| |
Collapse
|
18
|
Castro V, Rodríguez H, Albericio F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS COMBINATORIAL SCIENCE 2016; 18:1-14. [PMID: 26652044 DOI: 10.1021/acscombsci.5b00087] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.
Collapse
Affiliation(s)
- Vida Castro
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
| | - Hortensia Rodríguez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- School
of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001-Durban, South Africa
| |
Collapse
|
19
|
A new class of ghrelin O-acyltransferase inhibitors incorporating triazole-linked lipid mimetic groups. Bioorg Med Chem Lett 2015; 25:2800-3. [PMID: 26009163 DOI: 10.1016/j.bmcl.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023]
Abstract
Inhibitors of ghrelin O-acyltransferase (GOAT) have untapped potential as therapeutics targeting obesity and diabetes. We report the first examples of GOAT inhibitors incorporating a triazole linkage as a biostable isosteric replacement for the ester bond in ghrelin and amide bonds in previously reported GOAT inhibitors. These triazole-containing inhibitors exhibit sub-micromolar inhibition of the human isoform of GOAT (hGOAT), and provide a foundation for rapid future chemical diversification and optimization of hGOAT inhibitors.
Collapse
|
20
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
21
|
Synthesis and preliminary investigations into novel 1,2,3-triazole-derived androgen receptor antagonists inspired by bicalutamide. Bioorg Med Chem Lett 2014; 24:4948-53. [PMID: 25301770 DOI: 10.1016/j.bmcl.2014.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Abstract
A versatile and high yielding synthesis of novel androgen receptor (AR) antagonists is presented. Using this methodology, six 1,4-substituted-1,2,3-triazole derived bicalutamide mimics were synthesised in five steps and in isolated overall yields from 41% to 85%. Evaluation of these compounds for their anti-proliferative properties against androgen dependent (LNCaP) and independent (PC-3) cells showed promising IC50 values of 34-45 μM and 29-151 μM, respectively. The data suggest that the latter compounds may be an excellent starting point for the development of prostate cancer therapeutics for both androgen dependent and independent forms of this disease. Docking of these compounds (each enantiomer) in silico into the T877A mutated androgen receptor, as possessed by LNCaP cells, was also undertaken.
Collapse
|
22
|
Santarem M, Fonvielle M, Sakkas N, Laisné G, Chemama M, Herbeuval JP, Braud E, Arthur M, Etheve-Quelquejeu M. Synthesis of 3'-triazoyl-dinucleotides as precursors of stable Phe-tRNA(Phe) and Leu-tRNA(Leu) analogues. Bioorg Med Chem Lett 2014; 24:3231-3. [PMID: 24986659 DOI: 10.1016/j.bmcl.2014.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/25/2022]
Abstract
We report here the synthesis of stable Phe-tRNA(Phe) and Leu-tRNA(Leu) analogues containing a 1,2,3-triazole ring instead of the ribose-amino acid ester bond. The 1,2,3-triazole ring is generated by dipolar cycloaddition of alkyne Phe and Leu analogues to 3'-azido-3'-deoxyadenosine via the Cu(I)-catalysed Huisgen, Meldal, Sharpless 1,3-cycloaddition. The corresponding triazoyl pdCpA dinucleotides, obtained by classical phosphoramidite chemistry, were enzymatically ligated to 22-nt or 74-nt RNA generating stable Phe-tRNA(Phe) analogues containing the acceptor stem or full tRNA moieties, respectively. These molecules represent useful tools to study the contribution of the RNA and amino acid moieties in stabilization of aminoacyl-tRNA/protein complexes.
Collapse
Affiliation(s)
- Marco Santarem
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie Paris 6, 4, place Jussieu, 75005 Paris, France
| | - Matthieu Fonvielle
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, INSERM UMR S 1138, Université Pierre et Marie Curie-Paris 6, UMR S 1138, Paris F-75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris F-75006 France
| | - Nicolas Sakkas
- Chemistry & Biology Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Guillaume Laisné
- Chemistry & Biology Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Maryline Chemama
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie Paris 6, 4, place Jussieu, 75005 Paris, France
| | - Jean-Philippe Herbeuval
- Chemistry & Biology Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Emmanuelle Braud
- Chemistry & Biology Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, INSERM UMR S 1138, Université Pierre et Marie Curie-Paris 6, UMR S 1138, Paris F-75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris F-75006 France
| | - Mélanie Etheve-Quelquejeu
- Chemistry & Biology Nucleo(s)tides & Immunology for Therapy (CBNIT), CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.
| |
Collapse
|