1
|
Elneairy MAA, Youssef EGN, Ebrahim SAA, Mohammad NEM, Abd El-Rahman NMS, Elhewaty ASM, Sanad SMH, Mekky AEM. MRSA Inhibitory Activity of Some New Pyrazolo[1,5-a]pyrimidines Linked to Arene and/or Furan or Thiophene Units. Chem Biodivers 2025; 22:e202402031. [PMID: 39284766 DOI: 10.1002/cbdv.202402031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major contributor to hospital-acquired infections and is highly resistant to treatment. Ongoing research focuses on developing new antimicrobial medications to prevent the spread of resistance. A facile method was employed to efficiently synthesize new pyrazolo[1,5-a]pyrimidines in 84-93 % yields by reacting 4-benzyl-1H-pyrazole-3,5-diamine with the respective α,β-unsaturated ketones. The reaction was carried out in ethanol containing 1.2 equivalents of potassium hydroxide at reflux for 5-6 h. The new products are attached to a para-substituted aryl group with variable electronic properties at pyrazolopyrimidine-C5, in addition to one of three units at C7, namely phenyl, thiophen-2-yl, or furan-2-yl units. A wide spectrum of antibacterial activity was displayed by the new pyrimidines against six different bacterial strains. In general, pyrimidines attached to furan-2-yl units at C7, in addition to another aryl unit at C5, attached to 4-Me or 4-OMe groups, demonstrate significant antibacterial activity, particularly against S. aureus strain. They had MIC/MBC of 2.5/5.1 and 2.4/4.9 μM, respectively, which exceeded that of ciprofloxacin. Moreover, they demonstrate more effective MRSA inhibitory activity than linezolid, with MIC/MBC values up to 4.9/19.7 and 2.4/19.7 μM against MRSA ATCC:33591 and ATCC:43300 strains, respectively.
Collapse
Affiliation(s)
| | - Emad G N Youssef
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sama A A Ebrahim
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nour E M Mohammad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Ahmed S M Elhewaty
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Liu F, Wen S, Liu M, Min Y, Zhang Z, Shi L, Wang K, Deng Y, Yang Z, Yang F, Ke S. Heterocycle-functional steroidal derivatives: Design, synthesis, bioevaluation and SARs of steroidal pyrazolo[1,5-a]pyrimidines as potential ALK inhibitors. Bioorg Chem 2024; 153:107847. [PMID: 39348750 DOI: 10.1016/j.bioorg.2024.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Two series of heterocyclic steroidal pyrazolo[1,5-a]pyrimidines derived from dehydroepiandrosterone (DHEA) and epiandrosterone (EPIA) were designed and synthesized, and these compounds were screened for their potential antiproliferation activities. The preliminary bioassay indicated that some of target compounds exhibited significantly good antiproliferation activities against human melanoma cell line (A875) and human hepatocellular carcinoma (Huh-7) cell lines compared with 5-fluorouracil (5-FU), and some of which present good antiproliferative activities as potential ALK inhibitors. The detailed analysis of structure-activity relationships (SARs) based on the inhibition activities, kinase assay, and molecular docking demonstrated that the antiproliferation activities of these steroidal pyrazolo[1,5-a]pyrimidine might be affected by the β-hydroxyl group of steroidal scaffold and the N atom of pyridine heterocycle. Especially, compound 4c has certain inhibitory effects on the tyrosine protein kinases ALK, CDK2/CyclinE1, FAK, CDK5/P35, CDK9/CyclinT1, CDK5/P25, PIM2, CDK2/CyclinA2, CDK1/CyclinB1, etc., and which displayed highest inhibitory effect on the kinases of ALK with inhibition rate 40.63 % at the concentration of 10 μM, which induced cell death in A875 cells at least partly (initially), by apoptosis.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhigang Zhang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yunxia Deng
- Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Ziwen Yang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Yang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China; College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
3
|
Eldehna WM, Tawfik HO, Abdulla MH, Nafie MS, Aref H, Shaldam MA, Alhassan NS, Al Obeed O, Elsayed ZM, Abdel-Aziz HA. Identification of indole-grafted pyrazolopyrimidine and pyrazolopyridine derivatives as new anti-cancer agents: Synthesis, biological assessments, and molecular modeling insights. Bioorg Chem 2024; 153:107804. [PMID: 39276491 DOI: 10.1016/j.bioorg.2024.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
In the current medical era, developing new PIM-1 inhibitors stands as a significant approach to cancer management due to the pivotal role of PIM-1 kinase in promoting cell survival, proliferation, and drug resistance in various cancers. This study involved designing and synthesizing new derivatives of pyrazolo[1,5-a]pyrimidines (6a-i) and pyrazolo[3,4-b]pyridines (10a-i) as potential anti-cancer agents targeting PIM-1 kinase. The cytotoxicity was screened on three cancer cell lines: A-549 (lung), PANC-1 (pancreatic), and A-431 (skin), alongside MRC5 normal lung cells to assess selectivity. Several pyrazolo[1,5-a]pyrimidines (6b, 6c, 6g, 6h, and 6i) and pyrazolo[3,4-b]pyridine (10f) demonstrated notable anticancer properties, particularly against A-549 lung cancer cells (IC50 range: 1.28-3.52 μM), also they exhibited significantly lower toxicity towards MRC5 normal cells. Thereafter, the compounds were evaluated for their inhibitory activity against PIM-1 kinase. Notably, 10f, bearing a 4-methoxyphenyl moiety, demonstrated good inhibition of PIM-1 with an IC50 of 0.18 μM. Additionally, 10f induced apoptosis and arrested cell cycle progression in A-549 cells. Molecular docking and dynamics simulations provided insights into the binding interactions and compounds' stability with PIM-1 kinase. The results highlight these compounds, especially 10f, as promising selective anticancer agents targeting PIM-1 kinase.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Heba Aref
- Medicinal Chemistry Department, Faculty of Pharmacy, El Menoufia University, El Menoufia, Shebin El Kom 32511, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Noura S Alhassan
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Omar Al Obeed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hatem A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt; Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
4
|
Mahajan AT, Shivani, Datusalia AK, Coluccini C, Coghi P, Chaudhary S. Pyrazolo[1,5- a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors-Synthetic Strategies and SAR Insights. Molecules 2024; 29:3560. [PMID: 39124968 PMCID: PMC11314189 DOI: 10.3390/molecules29153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.
Collapse
Affiliation(s)
- Amol T. Mahajan
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Ashok Kumar Datusalia
- Laboratory of Molecular Neurotherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| |
Collapse
|
5
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
6
|
Almukadi H, Jadkarim GA, Mohammed A, Almansouri M, Sultana N, Shaik NA, Banaganapalli B. Combining machine learning and structure-based approaches to develop oncogene PIM kinase inhibitors. Front Chem 2023; 11:1137444. [PMID: 36970406 PMCID: PMC10036574 DOI: 10.3389/fchem.2023.1137444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: PIM kinases are targets for therapeutic intervention since they are associated with a number of malignancies by boosting cell survival and proliferation. Over the past years, the rate of new PIM inhibitors discovery has increased significantly, however, new generation of potent molecules with the right pharmacologic profiles were in demand that can probably lead to the development of Pim kinase inhibitors that are effective against human cancer.Method: In the current study, a machine learning and structure based approaches were used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four different machine learning methods, namely, support vector machine, random forest, k-nearest neighbour and XGBoost have been used for the development of models. Total, 54 Descriptors have been selected using the Boruta method.Results: SVM, Random Forest and XGBoost shows better performance as compared to k-NN. An ensemble approach was implemented and, finally, four potential molecules (CHEMBL303779, CHEMBL690270, MHC07198, and CHEMBL748285) were found to be effective for the modulation of PIM-1 activity. Molecular docking and molecular dynamic simulation corroborated the potentiality of the selected molecules. The molecular dynamics (MD) simulation study indicated the stability between protein and ligands.Discussion: Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery against PIM kinase.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gada Ali Jadkarim
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Majid Almansouri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasreen Sultana
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| |
Collapse
|
7
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Walhekar V, Bagul C, Kumar D, Muthal A, Achaiah G, Kulkarni R. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochim Biophys Acta Rev Cancer 2022; 1877:188725. [DOI: 10.1016/j.bbcan.2022.188725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022]
|
9
|
Abstract
A type of evolutionarily conserved, noncoding, small, endogenous, single-stranded RNA, miRNAs are widely distributed in eukaryotes, where they participate in various biological processes as critical regulatory molecules. miR-1299 has mainly been investigated in cancers. miR-1299 is a tumor suppressor that regulates the expression of its target genes, activating or inhibiting the transcription of genes regulating biological activities including cell proliferation, migration, survival and programmed cell death. miR-1299 has become a hotspot in research of disease mechanisms and biomarkers; elucidation of the regulatory roles of miR-1299 in tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis may provide a new perspective for understanding its biological functions as a tumor suppressor. As key regulatory molecules, microRNAs participate in various biological processes and have become a widespread research focus. This article discusses how the microRNA miR-1299 plays a role as a tumor suppressor and participates in the regulation of tumor pathogenesis. We provide an overview of the role of miR-1299 in tumor diseases and discuss the pathogenesis and regulation mechanisms of miR-1299 in different specific cancers.
Collapse
Affiliation(s)
- Deng Kaiyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Huang Lijuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Sun Xueyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Zang Yunhui
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| |
Collapse
|
10
|
Asati V, Agarwal S, Mishra M, Das R, Kashaw SK. Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: In-silico drug design studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Jismy B, Tikad A, Akssira M, Guillaumet G, Abarbri M. Efficient Access to 3,5-Disubstituted 7-(Trifluoromethyl)pyrazolo[1,5- a]pyrimidines Involving S NAr and Suzuki Cross-Coupling Reactions. Molecules 2020; 25:molecules25092062. [PMID: 32354132 PMCID: PMC7248703 DOI: 10.3390/molecules25092062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
An efficient and original synthesis of various 3,5-disubstituted 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines is reported. A library of compounds diversely substituted in C-3 and C-5 positions was easily prepared from a common starting material, 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one. In C-5 position, a SNAr type reaction was achieved by first activating the C–O bond of the lactam function with PyBroP (Bromotripyrrolidinophosphonium hexafluorophosphate), followed by the addition of amine or thiol giving monosubstituted derivatives, whereas in C-3 position, arylation was performed via Suzuki–Miyaura cross-coupling using the commercially available aromatic and heteroaromatic boronic acids. Moreover, trifluoromethylated analogues of potent Pim1 kinase inhibitors were designed following our concise synthetic methodology.
Collapse
Affiliation(s)
- Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles, Faculté des Sciences, Université Moulay Ismail, B.P. 11201, Zitoune, Meknès 50050, Morocco
| | - Mohamed Akssira
- Laboratoire de Chimie Physique & de Chimie Bioorganique, URAC 22, Université Hassan II de Casablanca, B.P. 146, Mohammedia 28800, Morocco
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orléans, France
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France
- Correspondence: ; Tel.: +33-(2)47-36-73-59; Fax: +33-(2)47-36-70-73
| |
Collapse
|
12
|
Abstract
Pyrazolo[1,5-a]pyrimidines are fused N-heterocyclic systems of a pyrazole. They are considered as a key structural motif in many vital applications, such as medicinal, pharmaceuticals, pesticides, dyes and pigments. Their synthetic routes have escalated dramatically in the last decades. The current review is a recent synthetic survey of pyrazolo[ 1,5-a]pyrimidines and their applications until recently.
Collapse
Affiliation(s)
- Amal Al-Azmi
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
13
|
Lukášová E, Řezáčová M, Bačíková A, Šebejová L, Vávrová J, Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio 2019; 9:870-890. [PMID: 30982228 PMCID: PMC6487726 DOI: 10.1002/2211-5463.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3‐related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild‐type p53 (WT‐p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU‐NHL (WT‐p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC‐1 and SU‐DHL‐4, both with mutated p53, and SU‐DHL‐4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Šebejová
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiřina Vávrová
- Department of Radiobiology, Faculty of Military Health Sciences Hradec Králové, University of Defence Brno, Hradec Králové, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
14
|
PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem 2019; 172:95-108. [PMID: 30954777 DOI: 10.1016/j.ejmech.2019.03.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The PIM kinase, also known as serine/threonine kinase plays an important role in cancer biology and is found in three different isoforms namely PIM-1, PIM-2, and PIM-3. They are extensively distributed and are implicated in a variety of biological processes, including cell proliferation, cell differentiation, and apoptosis. They act as weak oncogene and whenever expressed in exacerbating forms are responsible for different types of human cancer. Recently, different isoforms of PIM kinase have been identified as a clinical biomarker and potential therapeutic target for personalized treatment of advanced cancer. The inhibition of PIM kinase has become a scientific interest and some inhibitors have been developed and/or are under different phases of clinical trials. Several medicinally privileged heterocyclic ring scaffolds such as pyrrole, pyrimidine, thiazolidine, benzofuran, indole, triazole, oxadiazole, and quinoline derivatives have been synthesized and evaluated for their PIM inhibitory activity. This review comprehensively focuses on pharmacological implications of PIM kinases in oncogenesis, structural insights of PIM inhibitors and their structure-activity relationships (SARs).
Collapse
|
15
|
Wang X, Blackaby W, Allen V, Chan GKY, Chang JH, Chiang PC, Diène C, Drummond J, Do S, Fan E, Harstad EB, Hodges A, Hu H, Jia W, Kofie W, Kolesnikov A, Lyssikatos JP, Ly J, Matteucci M, Moffat JG, Munugalavadla V, Murray J, Nash D, Noland CL, Del Rosario G, Ross L, Rouse C, Sharpe A, Slaga D, Sun M, Tsui V, Wallweber H, Yu SF, Ebens AJ. Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma. J Med Chem 2019; 62:2140-2153. [DOI: 10.1021/acs.jmedchem.8b01857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wesley Blackaby
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Vivienne Allen
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Grace Ka Yan Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-Chang Chiang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Coura Diène
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Fan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric B. Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alastair Hodges
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wei Jia
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William Kofie
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph P. Lyssikatos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mizio Matteucci
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - John G. Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Nash
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Cameron L. Noland
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoff Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanne Ross
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig Rouse
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Andrew Sharpe
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Minghua Sun
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
16
|
Němec V, Hylsová M, Maier L, Flegel J, Sievers S, Ziegler S, Schröder M, Berger B, Chaikuad A, Valčíková B, Uldrijan S, Drápela S, Souček K, Waldmann H, Knapp S, Paruch K. Furo[3,2‐b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Václav Němec
- Department of Chemistry, CZ-OpenscreenMasaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Michaela Hylsová
- Department of Chemistry, CZ-OpenscreenMasaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Lukáš Maier
- Department of Chemistry, CZ-OpenscreenMasaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| | - Jana Flegel
- Max-Planck-Institute für Molekulare PhysiologieAbteilung Chemische Biologie Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Sonja Sievers
- Max-Planck-Institute für Molekulare PhysiologieAbteilung Chemische Biologie Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Slava Ziegler
- Max-Planck-Institute für Molekulare PhysiologieAbteilung Chemische Biologie Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Martin Schröder
- Institute for Pharmaceutical ChemistryStructural Genomics ConsortiumJohann Wolfgang Goethe-University Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Benedict‐Tilman Berger
- Institute for Pharmaceutical ChemistryStructural Genomics ConsortiumJohann Wolfgang Goethe-University Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical ChemistryStructural Genomics ConsortiumJohann Wolfgang Goethe-University Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Barbora Valčíková
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
- Department of BiologyFaculty of MedicineMasaryk University Kamenice 5 Brno 625 00 Czech Republic
| | - Stjepan Uldrijan
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
- Department of BiologyFaculty of MedicineMasaryk University Kamenice 5 Brno 625 00 Czech Republic
| | - Stanislav Drápela
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
- Department of CytokineticsInstitute of Biophysics CAS Královopolská 135 Brno 612 65 Czech Republic
| | - Karel Souček
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
- Department of CytokineticsInstitute of Biophysics CAS Královopolská 135 Brno 612 65 Czech Republic
| | - Herbert Waldmann
- Max-Planck-Institute für Molekulare PhysiologieAbteilung Chemische Biologie Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Stefan Knapp
- Institute for Pharmaceutical ChemistryStructural Genomics ConsortiumJohann Wolfgang Goethe-University Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Kamil Paruch
- Department of Chemistry, CZ-OpenscreenMasaryk University Kamenice 5 Brno 625 00 Czech Republic
- International Clinical Research CentreSt. Anne's University Hospital Pekařská 53 Brno 656 91 Czech Republic
| |
Collapse
|
17
|
Němec V, Hylsová M, Maier L, Flegel J, Sievers S, Ziegler S, Schröder M, Berger BT, Chaikuad A, Valčíková B, Uldrijan S, Drápela S, Souček K, Waldmann H, Knapp S, Paruch K. Furo[3,2-b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angew Chem Int Ed Engl 2018; 58:1062-1066. [PMID: 30569600 DOI: 10.1002/anie.201810312] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Reported is the identification of the furo[3,2-b]pyridine core as a novel scaffold for potent and highly selective inhibitors of cdc-like kinases (CLKs) and efficient modulators of the Hedgehog signaling pathway. Initially, a diverse target compound set was prepared by synthetic sequences based on chemoselective metal-mediated couplings, including assembly of the furo[3,2-b]pyridine scaffold by copper-mediated oxidative cyclization. Optimization of the subseries containing 3,5-disubstituted furo[3,2-b]pyridines afforded potent, cell-active, and highly selective inhibitors of CLKs. Profiling of the kinase-inactive subset of 3,5,7-trisubstituted furo[3,2-b]pyridines revealed sub-micromolar modulators of the Hedgehog pathway.
Collapse
Affiliation(s)
- Václav Němec
- Department of Chemistry, CZ-Openscreen, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Michaela Hylsová
- Department of Chemistry, CZ-Openscreen, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Lukáš Maier
- Department of Chemistry, CZ-Openscreen, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Jana Flegel
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Sonja Sievers
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Slava Ziegler
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Martin Schröder
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Barbora Valčíková
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Stjepan Uldrijan
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Stanislav Drápela
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, Brno, 612 65, Czech Republic
| | - Karel Souček
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic.,Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, Brno, 612 65, Czech Republic
| | - Herbert Waldmann
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Kamil Paruch
- Department of Chemistry, CZ-Openscreen, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| |
Collapse
|
18
|
Zemanova J, Hylse O, Collakova J, Vesely P, Oltova A, Borsky M, Zaprazna K, Kasparkova M, Janovska P, Verner J, Kohoutek J, Dzimkova M, Bryja V, Jaskova Z, Brychtova Y, Paruch K, Trbusek M. Chk1 inhibition significantly potentiates activity of nucleoside analogs in TP53-mutated B-lymphoid cells. Oncotarget 2018; 7:62091-62106. [PMID: 27556692 PMCID: PMC5308713 DOI: 10.18632/oncotarget.11388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Treatment options for TP53-mutated lymphoid tumors are very limited. In experimental models, TP53-mutated lymphomas were sensitive to direct inhibition of checkpoint kinase 1 (Chk1), a pivotal regulator of replication. We initially tested the potential of the highly specific Chk1 inhibitor SCH900776 to synergize with nucleoside analogs (NAs) fludarabine, cytarabine and gemcitabine in cell lines derived from B-cell malignancies. In p53-proficient NALM-6 cells, SCH900776 added to NAs enhanced signaling towards Chk1 (pSer317/pSer345), effectively blocked Chk1 activation (Ser296 autophosphorylation), increased replication stress (p53 and γ-H2AX accumulation) and temporarily potentiated apoptosis. In p53-defective MEC-1 cell line representing adverse chronic lymphocytic leukemia (CLL), Chk1 inhibition together with NAs led to enhanced and sustained replication stress and significantly potentiated apoptosis. Altogether, among 17 tested cell lines SCH900776 sensitized four of them to all three NAs. Focusing further on MEC-1 and co-treatment of SCH900776 with fludarabine, we disclosed chromosome pulverization in cells undergoing aberrant mitoses. SCH900776 also increased the effect of fludarabine in a proportion of primary CLL samples treated with pro-proliferative stimuli, including those with TP53 disruption. Finally, we observed a fludarabine potentiation by SCH900776 in a T-cell leukemia 1 (TCL1)-driven mouse model of CLL. Collectively, we have substantiated the significant potential of Chk1 inhibition in B-lymphoid cells.
Collapse
Affiliation(s)
- Jana Zemanova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Hylse
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Collakova
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Vesely
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Zaprazna
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Kasparkova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Janovska
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Kohoutek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Marta Dzimkova
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zuzana Jaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
19
|
Cherukupalli S, Karpoormath R, Chandrasekaran B, Hampannavar GA, Thapliyal N, Palakollu VN. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur J Med Chem 2016; 126:298-352. [PMID: 27894044 DOI: 10.1016/j.ejmech.2016.11.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
Pyrazolo[1,5-a]pyrimidine scaffold is one of the privileged hetrocycles in drug discovery. Its application as a buliding block for developing drug-like candidates has displayed broad range of medicinal properties such as anticancer, CNS agents, anti-infectious, anti-inflammatory, CRF1 antagonists and radio diagnostics. The structure-activity relationship (SAR) studies have acquired greater attention amid medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is plenty of room for the medicinal chemists to further exploit this privileged scaffold in developing potential drug candidates. The present review briefly outlines relevant synthetic strategies employed for pyrazolo[1,5-a]pyrimidine derivatives. It also extensively reveals significant biological properties along with SAR studies. To the best of our understanding current review is the first attempt made towards the compilation of significant advances made on pyrazolo[1,5-a]pyrimidines reported since 1980s.
Collapse
Affiliation(s)
- Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Girish A Hampannavar
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Venkata Narayana Palakollu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
20
|
Zhao YQ, Yin YQ, Liu J, Wang GH, Huang J, Zhu LJ, Wang JH. Characterization of HJ-PI01 as a novel Pim-2 inhibitor that induces apoptosis and autophagic cell death in triple-negative human breast cancer. Acta Pharmacol Sin 2016; 37:1237-50. [PMID: 27397540 DOI: 10.1038/aps.2016.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
AIM Pim-2 is a short-lived serine/threonine kinase, which plays a key role in metastasis of breast cancer through persistent activation of STAT3. Although the crystal structure of Pim-2 has been reported, but thus far no specific Pim-2-targeted compounds have been reported. In this study, we identified a novel Pim-2 inhibitor, HJ-PI01, by in silico analysis and experimental validation. METHODS The protein-protein interaction (PPI) network, chemical synthesis, molecular docking, and molecular dynamics (MD) simulations were used to design and discover the new Pim-2 inhibitor HJ-PI01. The anti-tumor effects of HJ-PI01 were evaluated in human breast MDA-MB-231, MDA-MB-468, MDA-MB-436, MCF-7 cells in vitro and in MDA-MB-231 xenograft mice, which were treated with HJ-PI01 (40 mg·kg(-1)·d(-1), ig) with or without lienal polypeptide (50 mg·kg(-1)·d(-1), ip) for 10 d. The apoptosis/autophage-inducing mechanisms of HJ-PI01 were elucidated using Western blots, immunoblots, flow cytometry, transmission electron microscopy and fluorescence microscopy. RESULTS Based on the PrePPI network, the potential partners interacting with Pim-2 in regulating apoptosis (160 protein pairs) and autophagy (47 protein pairs) were identified. Based on the structural characteristics of Pim-2, a total of 15 compounds (HJ-PI01 to HJ-P015) were synthesized, which showed moderate or remarkable anti-proliferative potency in the human breast cancer cell lines tested. The most effective compound HJ-PI01 exerted a robust inhibition on MDA-MB-231 cells compared with chlorpromazine and the pan-Pim inhibitor PI003. Molecular dynamics (MD) simulation revealed that HJ-PI01 had a good binding score with Pim-2. Moreover, HJ-PI01 (300 nmol/L) induced death receptor-dependent and mitochondrial apoptosis as well as autophagic death in MDA-MB-231 cells. In MDA-MB-231 xenograft mice, administration of HJ-PI01 remarkably inhibited the tumor growth and induced tumor cell apoptosis in vivo. Co-administration of HJ-PI01 with lienal polypeptide could improve the anti-tumor activity of HJ-PI01 and reduce its toxicity. CONCLUSION The newly synthesized compound, HJ-PI01, can induce death receptor/mitochondrial apoptosis and autophagic cell death by targeting Pim-2 in human breast cancer cells in vitro and in vivo.
Collapse
|
21
|
Liu Z, He W, Gao J, Luo J, Huang X, Gao C. Computational prediction and experimental validation of a novel synthesized pan-PIM inhibitor PI003 and its apoptosis-inducing mechanisms in cervical cancer. Oncotarget 2016; 6:8019-35. [PMID: 25749522 PMCID: PMC4480732 DOI: 10.18632/oncotarget.3139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022] Open
Abstract
PIM protein family, short-lived serine/threonine kinases (PIM1, PIM2 and PIM3), are weak oncogenes but contribute to tumorigenesis as cancer targets. Thus, design of a novel pan-PIM inhibitor is still a challenge for current cancer drug discovery. Herein, we used a Naïve Bayesian model to construct the PIM network and identified Bad and Hsp90 to interact with PIMs. Then, we screened a series of candidate small-molecule compounds targeting PIMs, and subsequently synthesized a novel small-molecule compound PI003 with remarkable anti-proliferative activities in cervical cancer cells. Moreover, we found that PI003 induced apoptosis via the death-receptor and mitochondrial pathways by targeting PIMs and affecting Bad and Hsp90. Combined with microRNA microarray analyses, we demonstrated that some microRNAs such as miR-1296 and miR-1299 could affect PIM1-STAT3 pathway in PI003-induced apoptosis. Finally, we reported that PI003 had remarkable anti-tumor activity and apoptosis-inducing effect in in vivo mouse model. In conclusion, these results demonstrate that PI003, as a novel synthesized pan-PIM inhibitor, induces the death-receptor and mitochondrial apoptosis involved in microRNA regulation, and also possessed remarkable anti-tumor activity and apoptosis-inducing effect in vivo. Thus, these findings would shed light on discovering more potential new small-molecule pan-PIM inhibitors in future cervical cancer therapy.
Collapse
Affiliation(s)
- Zhongyu Liu
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Weihua He
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Jianglin Gao
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Junhua Luo
- Department of Obstetrics & Gynecology, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Xian Huang
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Chunfang Gao
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| |
Collapse
|
22
|
Synthesis and Antitumor Evaluation of Novel 5-Hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one Derivatives. Molecules 2016; 21:516. [PMID: 27104509 PMCID: PMC6273811 DOI: 10.3390/molecules21040516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 02/05/2023] Open
Abstract
A series of novel 5-hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one derivatives bearing natural product substructures has been successfully synthesized and their antitumor activity studied. These newly synthesized derivatives were characterized by ¹H-NMR, (13)C-NMR and high resolution mass spectral data, then screened as antitumor agents against the A549, HCC1937, and MDA-MB-468 human tumor cell lines using MTT cell proliferation assays. The results show that some of these compounds can effectively inhibit the growth of these cancerous cells, with compound 5b being the best one (IC50 = 2.6 μM). Flow cytometry data revealed that compound 5b induced apoptosis of HCC1937 cells with increased solution concentration. The structure and activity relationships (SAR) of these compounds is summarized.
Collapse
|
23
|
Fan YB, Li K, Huang M, Cao Y, Li Y, Jin SY, Liu WB, Wen JC, Liu D, Zhao LX. Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential Pim-1 inhibitors. Bioorg Med Chem Lett 2016; 26:1224-8. [PMID: 26804231 DOI: 10.1016/j.bmcl.2016.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/24/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022]
Abstract
A novel series of substituted pyrido[3,2-d]-1,2,3-triazines were designed and synthesized as Pim-1 inhibitors through scaffold hopping. Most of the derivatives showed potent in vitro Pim-1 inhibitory activities and anti-proliferative effects toward prostate cancer cells. Among them, 6b, 6h and 6m showed the best Pim-1 inhibitory activity with IC50 values of 0.69, 0.60 and 0.80 μM, respectively. Furthermore, compounds 6b, 6i, 6j and 6m showed strong inhibitory activity to human prostate cancer LNcap and PC-3 cell lines with IC50 values at low micromolar level. Structure-activity relationship analysis revealed that appropriate substitutions at C-6 positions contributed to the kinase inhibition and antiproliferative effects. Moreover, western blot assay suggested that 6j could decrease the levels of p-BAD and p-4E-BP1 in a dose-dependent manner in PC-3 cells. Docking studies showed that 3-N of the scaffold formed a hydrogen bond with Lys67, aromatic 4-aniline formed a key π-π stack with Phe49. Taken together, this study might provide the first sight for developing the pyrido[3,2-d]-1,2,3-triazine scaffold as novel Pim-1 inhibitors.
Collapse
Affiliation(s)
- Yin-Bo Fan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shu-Yu Jin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen-Bing Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia-Chen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lin-Xiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
24
|
Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorg Med Chem Lett 2015; 25:5258-64. [DOI: 10.1016/j.bmcl.2015.09.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
|
25
|
Discovery of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amines as potent PIM inhibitors. Bioorg Med Chem Lett 2015; 25:775-80. [DOI: 10.1016/j.bmcl.2014.12.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/17/2022]
|
26
|
Xu Y, Brenning BG, Kultgen SG, Foulks JM, Clifford A, Lai S, Chan A, Merx S, McCullar MV, Kanner SB, Ho KK. Synthesis and Biological Evaluation of Pyrazolo[1,5-a]pyrimidine Compounds as Potent and Selective Pim-1 Inhibitors. ACS Med Chem Lett 2015; 6:63-7. [PMID: 25589932 DOI: 10.1021/ml500300c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/22/2014] [Indexed: 02/01/2023] Open
Abstract
Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo[1,5-a]pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases. Selected compounds suppressed both the phosphorylation of BAD protein in a cell-based assay and 2-dimensional colony formation in a clonogenic cell survival assay at submicromolar potency, suggesting that cellular activity was mediated through inhibition of Pim-1. Moreover, these Pim-1 inhibitors did not show significant hERG inhibition at 30 μM concentration. The lead compound proved to be highly selective against a panel of 119 oncogenic kinases, indicating it had an improved safety profile compared with the first generation Pim-1 inhibitor SGI-1776.
Collapse
Affiliation(s)
- Yong Xu
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Benjamin G. Brenning
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Steven G. Kultgen
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Jason M. Foulks
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Adrianne Clifford
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Shuping Lai
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Ashley Chan
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Shannon Merx
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Michael V. McCullar
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Steven B. Kanner
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| | - Koc-Kan Ho
- Astex Pharmaceuticals, Inc., 4140 Dublin Boulevard, Suite 200, Dublin, California 94568 United States
| |
Collapse
|