1
|
Zhao Z, Ruan S, Ma X, Feng Q, Xie Z, Nie Z, Fan P, Qian M, He X, Wu S, Zhang Y, Zheng X. Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5. Biomolecules 2019; 10:E10. [PMID: 31861703 PMCID: PMC7022446 DOI: 10.3390/biom10010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5, which mediates the cardiac ultra-rapid delayed-rectifier (IKur) current in human cells, has a crucial role in atrial fibrillation. Therefore, the design of selective Kv1.5 modulators is essential for the treatment of pathophysiological conditions involving Kv1.5 activity. This review summarizes the progress of molecular structures and the functionality of different types of Kv1.5 modulators, with a focus on clinical cardiovascular drugs and a number of active natural products, through a summarization of 96 compounds currently widely used. Furthermore, we also discuss the contributions of Kv1.5 and the regulation of the structure-activity relationship (SAR) of synthetic Kv1.5 inhibitors in human pathophysiology. SAR analysis is regarded as a useful strategy in structural elucidation, as it relates to the characteristics that improve compounds targeting Kv1.5. Herein, we present previous studies regarding the structural, pharmacological, and SAR information of the Kv1.5 modulator, through which we can assist in identifying and designing potent and specific Kv1.5 inhibitors in the treatment of diseases involving Kv1.5 activity.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Songsong Ruan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Xiaoming Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Qian Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Zhuosong Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Zhuang Nie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Peinan Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China;
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China;
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| |
Collapse
|
3
|
Bassetto Junior CAZ, Passianoto LVG, González ERP, Varanda WA. Benzenesulfonamides act as open-channel blockers on K V3.1 potassium channel. Amino Acids 2019; 51:355-364. [PMID: 30361851 DOI: 10.1007/s00726-018-2669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
KV3.1 blockers can serve as modulators of the rate of action potential firing in neurons with high rates of firing such as those of the auditory system. We studied the effects of several bioisosteres of N-alkylbenzenesulfonamides, and molecules derived from sulfanilic acid on KV3.1 channels, heterologously expressed in L-929 cells, using the whole-cell patch-clamp technique. Only the N-alkyl-benzenesulfonamides acted as open-channel blockers on KV3.1, while molecules analogous to PABA (p-aminobenzoic acid) and derived from sulfanilic acids did not block the channel. The IC50 of six N-alkyl-benzenesulfonamides ranged from 9 to 55 µM; and the Hill coefficient suggests the binding of two molecules to block KV3.1. Also, the effects of all molecules on KV3.1 were fully reversible. We look for similar features amongst the molecules that effectively blocked the channel and used them to model a blocker prototype. We found that bulkier groups and amino-lactams decreased the effectiveness of the blockage, while the presence of NO2 increased the effectiveness of the blockage. Thus, we propose N-alkylbenzenesulfonamides as a new class of KV3.1 channel blockers.
Collapse
Affiliation(s)
- Carlos Alberto Zanutto Bassetto Junior
- Fine Organic Chemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Science and Technology, São Paulo State University (Unesp)-Campus of Presidente Prudente, São Paulo, SP, CEP 19060-900, Brazil
| | - Luana Vitorino Gushiken Passianoto
- Fine Organic Chemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Science and Technology, São Paulo State University (Unesp)-Campus of Presidente Prudente, São Paulo, SP, CEP 19060-900, Brazil
| | - Eduardo René Pérez González
- Fine Organic Chemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Science and Technology, São Paulo State University (Unesp)-Campus of Presidente Prudente, São Paulo, SP, CEP 19060-900, Brazil.
| | - Wamberto Antonio Varanda
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Bassetto Junior CAZ, Varanda WA, González ERP. 4-Chloro-3-nitro-N-butylbenzenesulfonamide acts on K V3.1 channels by an open-channel blocker mechanism. Amino Acids 2017; 49:1895-1906. [PMID: 28900735 DOI: 10.1007/s00726-017-2488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/07/2017] [Indexed: 12/01/2022]
Abstract
The effects of 4-chloro-3-nitro-N-butylbenzenesulfonamide (SMD2) on KV3.1 channels, heterologous expressed in L-929 cells, were studied with the whole cell patch-clamp technique. SMD2 blocks KV3.1 in a reversible and use-dependent manner, with IC50 around 10 µM, and a Hill coefficient around 2. Although the conductance vs. voltage relationship in control condition can be described by a single Boltzmann function, two terms are necessary to describe the data in the presence of SMD2. The activation and deactivation time constants are weakly voltage dependent both for control and in the presence of SMD2. SMD2 does not change the channel selectivity and tail currents show a typical crossover phenomenon. The time course of inactivation has a fast and a slow component, and SMD2 significantly decreased their values. Steady-state inactivation is best described by a Boltzmann equation with V 1/2 (the voltage where the probability to find the channels in the inactivated state is 50%) and K (slope factor) equals to -22.9 ± 1.5 mV and 5.3 ± 0.9 mV for control, and -30.3 ± 1.3 mV and 6 ± 0.8 mV for SMD2, respectively. The action of SMD2 is enhanced by high frequency stimulation, and by the time the channel stays open. Taken together, our results suggest that SMD2 blocks the open conformation of KV3.1. From a pharmacological and therapeutic point of view, N-alkylsulfonamides may constitute a new class of pharmacological modulators of KV3.1.
Collapse
Affiliation(s)
- Carlos Alberto Zanutto Bassetto Junior
- Fine Organic Chemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Science and Technology, São Paulo State University (Unesp)-Campus of Presidente Prudente, Presidente Prudente, SP, Brazil. .,Post-Graduate Program in Science and Material Technology, Presidente Prudente, SP, Brazil.
| | - Wamberto Antonio Varanda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo René Pérez González
- Fine Organic Chemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Science and Technology, São Paulo State University (Unesp)-Campus of Presidente Prudente, Presidente Prudente, SP, Brazil.,Post-Graduate Program in Science and Material Technology, Presidente Prudente, SP, Brazil
| |
Collapse
|
6
|
Kajanus J, Jacobson I, Åstrand A, Olsson RI, Gran U, Björe A, Fjellström O, Davidsson Ö, Emtenäs H, Dahlén A, Löfberg B, Yuan ZQ, Sundell J, Cassel J, Gyll J, Iliefski T, Högberg Å, Lindhardt E, Malmberg J. Isoindolinone compounds active as Kv1.5 blockers identified using a multicomponent reaction approach. Bioorg Med Chem Lett 2016; 26:2023-9. [DOI: 10.1016/j.bmcl.2016.02.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 12/19/2022]
|
8
|
Perlovich GL, Ryzhakov AM, Tkachev VV, Proshin AN. Adamantane derivatives of sulfonamide molecular crystals: structure, sublimation thermodynamic characteristics, molecular packing, and hydrogen bond networks. CrystEngComm 2015. [DOI: 10.1039/c4ce02076f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The crystal structures of six adamantane derivatives of sulfonamides have been determined by X-ray diffraction and their sublimation and fusion processes have been studied.
Collapse
Affiliation(s)
- German L. Perlovich
- Krestov's Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo, Russia
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
| | - Alex M. Ryzhakov
- Krestov's Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo, Russia
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
| | - Valery V. Tkachev
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- , Russia
- Laboratory of Structural Chemistry
- Institute of Problems of Chemical Physics
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- , Russia
| |
Collapse
|