1
|
Kim J, Yang J, Heo S, Poo H. Evaluation of mRNA Transfection Reagents for mRNA Delivery and Vaccine Efficacy via Intramuscular Injection in Mice. ACS APPLIED BIO MATERIALS 2025; 8:4315-4324. [PMID: 40263125 DOI: 10.1021/acsabm.5c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The selection of an effective delivery carrier is crucial to assessing mRNA-based vaccines and therapeutics in vivo. Although lipid nanoparticles (LNPs) are commonly used for mRNA delivery, the LNP-mRNA formulation process is laborious and time-consuming and requires a high-cost microfluidic device. Instead, mixing with commercial reagents may simplify mRNA transfection into cells. However, their potential as in vivo carriers in intramuscular vaccination in mouse models remains unclear. In this study, we used three types of commercial RNA transfection reagents, MessengerMAX (MAX; liposome), TransIT-mRNA (IT; cationic polymer), and Invivofectamine (IVF; LNP), to produce nanoparticles directly by pipetting. The particle characteristics and mRNA delivery efficacy of the mRNA-transfection reagent mixtures were analyzed. Additionally, immune responses to vaccine efficacy and protective immunity of the mRNA mixtures as vaccine antigens were evaluated in a mouse model. Although MAX and IT showed high in vitro transfection efficiencies, their in vivo performances were limited. In contrast, IVF exhibited notable particle stability and homogeneity, making it a promising delivery carrier. Intramuscular IVF injection significantly enhanced both innate and adaptive immune responses with a robust systemic protein expression. Notably, when using SARS-CoV-2 Spike mRNA, IVF showed robust humoral immune responses, including production of IgG and neutralizing antibodies, thereby resulting in complete protection against SARS-CoV-2 infection. Therefore, these findings position IVF as an accessible and efficient mRNA carrier for evaluating mRNA vaccines and therapeutic efficacy in basic research.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Suhyeon Heo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Abstract
An efficient construction of amides through NHC-mediated oxidation of imines is described. This work has the advantages of wide scope, fast assembly and high yield, and can avoid the use of coupling agents, such as HATU, DCC, etc.
Collapse
Affiliation(s)
- Shaofa Sun
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Fangyi Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Liu S, Su Y, Lin MZ, Ronald JA. Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol 2021; 16:2707-2718. [PMID: 34780699 PMCID: PMC8689642 DOI: 10.1021/acschembio.1c00549] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Bioluminescence imaging
(BLI) using luciferase reporters is an
indispensable method for the noninvasive visualization of cell populations
and biochemical events in living animals. BLI is widely performed
with preclinical rodent models to understand disease processes and
evaluate potential cell- or gene-based therapies. However, in vivo BLI remains constrained by low photon production
and tissue attenuation, limiting the sensitivity of reporting from
small numbers of cells in deep locations and hindering its application
to larger animal models. This Review highlights recent advances in
the development of luciferase systems that improve the sensitivity
of in vivo BLI and discusses the expanding array
of biological applications.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| | - Yichi Su
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - John A. Ronald
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| |
Collapse
|
4
|
Takakura H. Molecular Design of d-Luciferin-Based Bioluminescence and 1,2-Dioxetane-Based Chemiluminescence Substrates for Altered Output Wavelength and Detecting Various Molecules. Molecules 2021; 26:molecules26061618. [PMID: 33803935 PMCID: PMC7998607 DOI: 10.3390/molecules26061618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Optical imaging including fluorescence and luminescence is the most popular method for the in vivo imaging in mice. Luminescence imaging is considered to be superior to fluorescence imaging due to the lack of both autofluorescence and the scattering of excitation light. To date, various luciferin analogs and bioluminescence probes have been developed for deep tissue and molecular imaging. Recently, chemiluminescence probes have been developed based on a 1,2-dioxetane scaffold. In this review, the accumulated findings of numerous studies and the design strategies of bioluminescence and chemiluminescence imaging reagents are summarized.
Collapse
Affiliation(s)
- Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
5
|
Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 2020; 211:113111. [PMID: 33360804 DOI: 10.1016/j.ejmech.2020.113111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging (BLI) is a newly developed noninvasive visual approach which facilitates the understanding of a plethora of biological processes in vitro and in vivo due to the high sensitivity, resolution and selectivity, low background signal, and the lack of external light excitation. BLI based on firefly luciferin-luciferase system has been widely used for the activity evaluation of tumor-specific enzymes, for the detection of diseases-related bioactive small molecules and metal ions, and for the diagnosis and therapy of diseases including the studies of drug transport, the research of immune response, and the evaluation of drug potency and tissue distribution. In this review, we highlight the recent achievements in luciferin derivatives with red-shifted emission spectra, mutant luciferase-luciferin pairs, and the diagnostic and therapeutic application of BLI based on firefly luciferin-luciferase system. The development and application of BLI will expand our knowledge of the occurrence and development of diseases and shed light on the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyang Ruan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Miller SC, Mofford DM, Adams ST. Lessons Learned from Luminous Luciferins and Latent Luciferases. ACS Chem Biol 2018; 13:1734-1740. [PMID: 29439568 DOI: 10.1021/acschembio.7b00964] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Compared to the broad palette of fluorescent molecules, there are relatively few structures that are competent to support bioluminescence. Here, we focus on recent advances in the development of luminogenic substrates for firefly luciferase. The scope of this light-emitting chemistry has been found to extend well beyond the natural substrate and to include enzymes incapable of luciferase activity with d-luciferin. The broadening range of luciferin analogues and evolving insight into the bioluminescent reaction offer new opportunities for the construction of powerful optical reporters of use in live cells and animals.
Collapse
Affiliation(s)
- Stephen C. Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - David M. Mofford
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Spencer T. Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Kitada N, Saitoh T, Ikeda Y, Iwano S, Obata R, Niwa H, Hirano T, Miyawaki A, Suzuki K, Nishiyama S, Maki SA. Toward bioluminescence in the near-infrared region: Tuning the emission wavelength of firefly luciferin analogues by allyl substitution. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Wu W, Su J, Tang C, Bai H, Ma Z, Zhang T, Yuan Z, Li Z, Zhou W, Zhang H, Liu Z, Wang Y, Zhou Y, Du L, Gu L, Li M. cybLuc: An Effective Aminoluciferin Derivative for Deep Bioluminescence Imaging. Anal Chem 2017; 89:4808-4816. [PMID: 28378575 PMCID: PMC5417088 DOI: 10.1021/acs.analchem.6b03510] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/05/2017] [Indexed: 01/23/2023]
Abstract
To enhance the efficiency of firefly luciferase/luciferin bioluminescence imaging, a series of N-cycloalkylaminoluciferins (cyaLucs) were developed by introducing lipophilic N-cycloalkylated substitutions. The experimental results demonstrate that these cyaLucs are effective substrates for native firefly luciferase (Fluc) and can produce elevated bioluminescent signals in vitro, in cellulo, and in vivo. It should be noted that, in animal studies, N-cyclobutylaminoluciferin (cybLuc) at 10 μM (0.1 mL), which is 0.01% of the standard dose of d-luciferin (dLuc) used in mouse imaging, can radiate 20-fold more bioluminescent light than d-luciferin (dLuc) or aminoluciferin (aLuc) at the same concentration. Longer in vivo emission imaging using cybLuc suggests that it can be used for long-time observation. Regarding the mechanism of cybLuc, our cocrystal structure data from firefly luciferase with oxidized cybLuc suggested that oxidized cybLuc fits into the same pocket as oxyluciferin. Most interestingly, our results demonstrate that the sensitivity of cybLuc in brain tumor imaging contributes to its extended application in deep tissues.
Collapse
Affiliation(s)
- Wenxiao Wu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Jing Su
- State
Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
- Faculty
of Light Industry, Province Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Chunchao Tang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Haixiu Bai
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Tianchao Zhang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zenglin Yuan
- State
Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Zhenzhen Li
- Faculty
of Light Industry, Province Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Wenjuan Zhou
- Department
of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders,
School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huateng Zhang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yue Wang
- Department
of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders,
School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yubin Zhou
- Center
for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, United States
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lichuan Gu
- State
Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology, School
of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
9
|
Steinhardt RC, Rathbun CM, Krull BT, Yu JM, Yang Y, Nguyen BD, Kwon J, McCutcheon DC, Jones KA, Furche F, Prescher JA. Brominated Luciferins Are Versatile Bioluminescent Probes. Chembiochem 2016; 18:96-100. [PMID: 27930848 DOI: 10.1002/cbic.201600564] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 01/08/2023]
Abstract
We report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed. Differences in photon output were analyzed by computation and photophysical measurements. The brightest brominated luciferin was further evaluated in cell and animal models. At low doses, the analogue outperformed the native substrate in cells. The remaining luciferins, although weak emitters with firefly luciferase, were inherently capable of light production and thus potential substrates for orthogonal mutant enzymes.
Collapse
Affiliation(s)
- Rachel C Steinhardt
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Colin M Rathbun
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Brandon T Krull
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Yuhang Yang
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Jake Kwon
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - David C McCutcheon
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Krysten A Jones
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697, USA
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA
| |
Collapse
|
10
|
Romieu A. “AND” luminescent “reactive” molecular logic gates: a gateway to multi-analyte bioimaging and biosensing. Org Biomol Chem 2015; 13:1294-306. [DOI: 10.1039/c4ob02076f] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This feature article focuses on the recent development of “AND” luminescent molecular logic gates, in which the optical output is produced in response to multiple (bio)chemical inputs and through cascades of covalent bond-modifying reactions triggered by target (bio)analytes, for biosensing and bioimaging applications in complex media.
Collapse
Affiliation(s)
- Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Université de Bourgogne
- 21078 Dijon
- France
| |
Collapse
|