2
|
Sohrabi M, Saeedi M, Larijani B, Mahdavi M. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research. Eur J Med Chem 2021; 216:113308. [PMID: 33713976 DOI: 10.1016/j.ejmech.2021.113308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Unique structure, characteristic reactivity, and facile synthesis of metal complexes have made them efficient ligands in drug development research. Among them, rhodium complexes have a limited history and there are a few discussions about their biological activities documented in the literature. However, investigation of kinetically inert rhodium complexes has recently attracted lots of attention and especially there are various evidences on their anti-cancer activity. It seems that they can be investigated as a versatile surrogates or candidates for the existing drugs which do not affect selectively or suffer from various side effects. In recent years, there has been an increasing interest in the use of mononuclear rhodium (III) organometallo drugs due to its versatile structurally important aspects to inhibit various enzymes. It has been demonstrated that organometallic Rh complexes profiting from both organic and inorganic aspects have shown more potent biological activities than classical inorganic compartments. In this respect, smart design, use of the appropriate organic ligands, and efficient and user-friendly synthesis of organometallic Rh complexes have played crucial roles in the inducing desirable biological activities. In this review, we focused on the recent advances published on the bioactivity of Rh (III/II/I) complexes especially inhibitory activity, from 2013 till now. Accordingly, considering the structure-activity relationship (SAR), the effect of oxidation state (+1, +2, and +3) and geometry (dimer or monomer complexes with coordination number of 4 and 6) of Rh complexes as well as various ligands on in vitro and in vivo studies was comprehensively discussed.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Minus MB, Wang H, Munoz JO, Stevens AM, Mangubat-Medina AE, Krueger MJ, Liu W, Kasembeli MM, Cooper JC, Kolosov MI, Tweardy DJ, Redell MS, Ball ZT. Targeting STAT3 anti-apoptosis pathways with organic and hybrid organic-inorganic inhibitors. Org Biomol Chem 2020; 18:3288-3296. [PMID: 32286579 PMCID: PMC7286531 DOI: 10.1039/c9ob02682g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recurrence and drug resistance are major challenges in the treatment of acute myeloid leukemia (AML) that spur efforts to identify new clinical targets and active agents. STAT3 has emerged as a potential target in resistant AML, but inhibiting STAT3 function has proven challenging. This paper describes synthetic studies and biological assays for a naphthalene sulfonamide inhibitor class of molecules that inhibit G-CSF-induced STAT3 phosphorylation in cellulo and induce apoptosis in AML cells. We describe two different approaches to inhibitor design: first, variation of substituents on the naphthalene sulfonamide core allows improvements in anti-STAT activity and creates a more thorough understanding of anti-STAT SAR. Second, a novel approach involving hybrid sulfonamide-rhodium(ii) conjugates tests our ability to use cooperative organic-inorganic binding for drug development, and to use SAR studies to inform metal conjugate design. Both approaches have produced compounds with improved binding potency. In vivo and in cellulo experiments further demonstrate that these approaches can also lead to improved activity in living cells, and that compound 3aa slows disease progression in a xenograft model of AML.
Collapse
Affiliation(s)
- Matthew B Minus
- Prairieview A&M University, Prairie View, TX 77446, USA and Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Haopei Wang
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Jaime O Munoz
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030, USA
| | - Alexandra M Stevens
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030, USA
| | | | - Michael J Krueger
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030, USA
| | - Wei Liu
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030, USA
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julian C Cooper
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Mikhail I Kolosov
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Department of Molecule and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michele S Redell
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030, USA
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
4
|
Minus MB, Kang MK, Knudsen SE, Liu W, Krueger MJ, Smith ML, Redell MS, Ball ZT. Assessing the intracellular fate of rhodium(ii) complexes. Chem Commun (Camb) 2018; 52:11685-11688. [PMID: 27709185 DOI: 10.1039/c6cc05192h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rhodium(ii)-fluorophore conjugates have strong rhodium-based fluorescence quenching that can be harnessed to report on a conjugate's cellular uptake and the intracellular decomposition rate. Information gleened from this study allowed the design of an improved STAT3 metalloinhibitor.
Collapse
Affiliation(s)
- Matthew B Minus
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Marci K Kang
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Sarah E Knudsen
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Wei Liu
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Krueger
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Morgen L Smith
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Michele S Redell
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| |
Collapse
|