1
|
Miyaji K, Masaki Y, Seio K. Inhibitory Effects on RNA Binding and RNase H Induction Activity of Prodrug-Type Oligodeoxynucleotides Modified with a Galactosylated Self-Immolative Linker Cleavable by β-Galactosidase. Bioconjug Chem 2024. [PMID: 39376088 DOI: 10.1021/acs.bioconjchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Prodrug-type oligonucleotides (prodrug-ONs) are a class of oligonucleotide designed for activation under specific intracellular conditions or external stimuli. Prodrug-ONs can be activated in the target tissues or cells, thereby reducing the risk of adverse effects. In this study, we synthesized prodrug-type oligodeoxynucleotides activated by β-galactosidase, an enzyme that is overexpressed in cancer and senescent cells. These oligodeoxynucleotides (ODNs) contain a modified thymidine conjugated with galactose via a self-immolative linker at the O4-position. UV-melting analysis revealed that the modifications decreased the melting temperature (Tm) compared with that of the unmodified ODN when hybridized with complementary RNA. Furthermore, cleavage of the glycosidic bond by β-galactosidase resulted in the spontaneous removal of the linker from the nucleobase moiety, generating unmodified ODNs. Additionally, the introduction of multiple modified thymidines into ODNs completely inhibited the RNase H-mediated cleavage of complementary RNA. These findings suggest the possibility of developing prodrug-ONs, which are specifically activated in cancer cells or senescent cells with high β-galactosidase expression.
Collapse
Affiliation(s)
- Kento Miyaji
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Nucleotide and Peptide Drug Discovery Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Sugimoto N, Hayashi J, Funaki R, Wada SI, Wada F, Harada-Shiba M, Urata H. Prodrug-Type Phosphotriester Oligonucleotides with Linear Disulfide Promoieties Responsive to Reducing Environment. Chembiochem 2023; 24:e202300526. [PMID: 37840006 DOI: 10.1002/cbic.202300526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/17/2023]
Abstract
Various chemical modifications have been developed to create new antisense oligonucleotides (AONs) for clinical applications. Our previously designed prodrug-type phosphotriester-modified oligonucleotide with cyclic disulfides (cyclic SS PTE ON) can be converted into unmodified ON in an intracellular-mimetic reducing environment. However, the conversion rate of the cyclic SS PTE ON was very low, and the AON with cyclic SS PTE modifications showed much weaker antisense activity than corresponding to the fully phosphorothioate-modified AON. In this study, we synthesized several types of PTE ONs containing linear disulfides (linear SS PTE ONs) and evaluated their conversion rates under reducing conditions. From the results, the structural requirements for the conversion of the synthesized linear SS PTE ONs were elucidated. Linear SS PTE ON with promising promoieties showed a nuclease resistance up to 4.8-fold compared to unmodified ON and a cellular uptake by endocytosis without any transfection reagent. In addition, although the knockdown activity of the linear SS PTE gapmer AON is weaker than that of the fully phosphorothioate-modified gapmer AON, the knockdown activity is slightly stronger than that of the cyclic SS PTE gapmer AON. These results suggest that the conversion rates may be related to the expression of the antisense activity.
Collapse
Affiliation(s)
- Norihito Sugimoto
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Junsuke Hayashi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ryohei Funaki
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fumito Wada
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
- Present address: Liid Pharmaceuticals, Inc.21001 Open Innovation Center, National Cerebral & Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
| | - Mariko Harada-Shiba
- National Cerebral & Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka, 564-8565, Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
3
|
Saneyoshi H, Ono A. Design and Synthesis of Protecting Groups for Pro-oligo Type Nucleic Acid-based Drugs. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hisao Saneyoshi
- Department of Chemistry, Shiga University of Medical Science
| | - Akira Ono
- Department of Material and Life Chemistry, Kanagawa University
| |
Collapse
|
4
|
Saneyoshi H, Ohta T, Hiyoshi Y, Saneyoshi T, Ono A. Design, Synthesis, and Cellular Uptake of Oligonucleotides Bearing Glutathione-Labile Protecting Groups. Org Lett 2019; 21:862-866. [PMID: 30714380 DOI: 10.1021/acs.orglett.8b03501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glutathione-labile protecting groups for phosphodiester moieties in oligonucleotides were designed, synthesized, and incorporated into oligonucleotides. The protecting groups on the phosphodiester moieties were cleaved in a buffer containing 10 mM glutathione, which was used as a model of intracellular fluid. Cellular uptake of oligonucleotides bearing glutathione-labile protecting groups was strongly affected by the location and number of the protecting groups.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering , Kanagawa University , 3-27-1 Rokkakubashi , Kanagawa-ku , Yokohama 221-8686 , Japan
| | - Takayuki Ohta
- Department of Material and Life Chemistry, Faculty of Engineering , Kanagawa University , 3-27-1 Rokkakubashi , Kanagawa-ku , Yokohama 221-8686 , Japan
| | - Yuki Hiyoshi
- Department of Material and Life Chemistry, Faculty of Engineering , Kanagawa University , 3-27-1 Rokkakubashi , Kanagawa-ku , Yokohama 221-8686 , Japan
| | - Takeo Saneyoshi
- Department of Pharmacology , Kyoto University Graduate School of Medicine , Kyoto 606-8501 , Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering , Kanagawa University , 3-27-1 Rokkakubashi , Kanagawa-ku , Yokohama 221-8686 , Japan
| |
Collapse
|
5
|
Synthesis and characterization of a photoresponsive doxorubicin/combretastatin A4 hybrid prodrug. Bioorg Med Chem Lett 2019; 29:487-490. [DOI: 10.1016/j.bmcl.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022]
|
6
|
Saneyoshi H, Ono A. Development of Protecting Groups for Prodrug-Type Oligonucleotide Medicines. Chem Pharm Bull (Tokyo) 2018; 66:147-154. [PMID: 29386465 DOI: 10.1248/cpb.c17-00696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, nucleic acid-based drug therapeutics have gained considerable attention for their potential in the treatment of various diseases. However, their therapeutic value is greatly hindered by the challenge of delivering them into cells. One possible strategy to improve cellular uptake is the use of "prodrug-type oligonucleotide medicine" in which negatively charged phosphodiester moieties are masked by bio-labile protecting groups. In this review, we describe our recent studies related to bio-labile protecting groups for phosphodiester moieties in the development of prodrug-type oligonucleotide medicines.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University
| |
Collapse
|
7
|
Debart F, Dupouy C, Vasseur JJ. Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing. Beilstein J Org Chem 2018; 14:436-469. [PMID: 29520308 PMCID: PMC5827813 DOI: 10.3762/bjoc.14.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Oligonucleotides (ONs) have been envisaged for therapeutic applications for more than thirty years. However, their broad use requires overcoming several hurdles such as instability in biological fluids, low cell penetration, limited tissue distribution, and off-target effects. With this aim, many chemical modifications have been introduced into ONs definitively as a means of modifying and better improving their properties as gene silencing agents and some of them have been successful. Moreover, in the search for an alternative way to make efficient ON-based drugs, the general concept of prodrugs was applied to the oligonucleotide field. A prodrug is defined as a compound that undergoes transformations in vivo to yield the parent active drug under different stimuli. The interest in stimuli-responsive ONs for gene silencing functions has been notable in recent years. The ON prodrug strategies usually help to overcome limitations of natural ONs due to their low metabolic stability and poor delivery. Nevertheless, compared to permanent ON modifications, transient modifications in prodrugs offer the opportunity to regulate ON activity as a function of stimuli acting as switches. Generally, the ON prodrug is not active until it is triggered to release an unmodified ON. However, as it will be described in some examples, the opposite effect can be sought. This review examines ON modifications in response to various stimuli. These stimuli may be internal or external to the cell, chemical (glutathione), biochemical (enzymes), or physical (heat, light). For each stimulus, the discussion has been separated into sections corresponding to the site of the modification in the nucleotide: the internucleosidic phosphate, the nucleobase, the sugar or the extremities of ONs. Moreover, the review provides a current and detailed account of stimuli-responsive ONs with the main goal of gene silencing. However, for some stimuli-responsive ONs reported in this review, no application for controlling gene expression has been shown, but a certain potential in this field could be demonstrated. Additionally, other applications in different domains have been mentioned to extend the interest in such molecules.
Collapse
Affiliation(s)
- Françoise Debart
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
8
|
Saneyoshi H, Iketani K, Kondo K, Saneyoshi T, Okamoto I, Ono A. Synthesis and Characterization of Cell-Permeable Oligonucleotides Bearing Reduction-Activated Protecting Groups on the Internucleotide Linkages. Bioconjug Chem 2016; 27:2149-56. [PMID: 27598574 DOI: 10.1021/acs.bioconjchem.6b00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-permeable oligodeoxyribonucleotides (ODNs) bearing reduction-activated protecting groups were synthesized as oligonucleotide pro-drugs. Although these oligonucleotides were amenable to solid-phase DNA synthesis and purification, the protecting group on their phosphodiester moiety could be readily cleaved by nitroreductase and NADH. Moreover, these compounds exhibited good nuclease resistance against 3'-exonuclease and endonuclease and good stability in human serum. Fluorescein-labeled ODNs modified with reduction-activated protecting groups showed better cellular uptake compared with that of naked ODNs.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Koichi Iketani
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kazuhiko Kondo
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takeo Saneyoshi
- Brain Science Institute RIKEN , 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Itaru Okamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University , 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
9
|
Ikeda M, Kamimura M, Hayakawa Y, Shibata A, Kitade Y. Reduction-Responsive Guanine Incorporated into G-Quadruplex-Forming DNA. Chembiochem 2016; 17:1304-7. [PMID: 27124306 DOI: 10.1002/cbic.201600164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Stimulus-responsive biomolecules are attractive targets to understand biomolecule behaviour as well as to explore their therapeutic and diagnostic applications. We demonstrate that a reduction-responsive cleavable group (chemically caged unit) introduced into the guanine ring enables modulation of the secondary structure transition of an oligonucleotide in a reduction-responsive and traceless manner leaving the unmodified oligonucleotide of interest. This simple but robust strategy could yield a variety of stimuli-responsive oligonucleotides.
Collapse
Affiliation(s)
- Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan. .,Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan.
| | - Masahiro Kamimura
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan
| | - Yukiko Hayakawa
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan.,Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan
| | - Yukio Kitade
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan. .,Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
10
|
Saneyoshi H, Kondo K, Sagawa N, Ono A. Glutathione-triggered activation of the model of pro-oligonucleotide with benzyl protecting groups at the internucleotide linkage. Bioorg Med Chem Lett 2015; 26:622-625. [PMID: 26639763 DOI: 10.1016/j.bmcl.2015.11.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022]
Abstract
We have examined substituted benzyl protecting groups for the phosphodiester in oligodeoxyribonucleotides. Stability of the protecting groups in buffer and rates of deprotection by glutathione (GSH) were strongly influenced by benzyl ring substituents.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Kazuhiko Kondo
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Naoki Sagawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|