1
|
Bossuat M, Rullière P, Preuilh N, Peixoto A, Joly E, Gomez JG, Bourkhis M, Rodriguez F, Gonçalves F, Fabing I, Gaspard H, Bernardes-Génisson V, Maraval V, Ballereau S, Chauvin R, Britton S, Génisson Y. Phenyl dialkynylcarbinols, a Bioinspired Series of Synthetic Antitumor Acetylenic Lipids. J Med Chem 2023; 66:13918-13945. [PMID: 37816126 DOI: 10.1021/acs.jmedchem.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A series of 25 chiral anti-cancer lipidic alkynylcarbinols (LACs) were devised by introducing an (hetero)aromatic ring between the aliphatic chain and the dialkynylcarbinol warhead. The resulting phenyl-dialkynylcarbinols (PACs) exhibit enhanced stability, while retaining cytotoxicity against HCT116 and U2OS cell lines with IC50 down to 40 nM for resolved eutomers. A clickable probe was used to confirm the PAC prodrug behavior: upon enantiospecific bio-oxidation of the carbinol by the HSD17B11 short-chain dehydrogenase/reductase (SDR), the resulting ynones covalently modify cellular proteins, leading to endoplasmic reticulum stress, ubiquitin-proteasome system inhibition, and apoptosis. Insights into the design of LAC prodrugs specifically bioactivated by HSD17B11 vs its paralogue HSD17B13 were obtained. The HSD17B11/HSD17B13-dependent cytotoxicity of PACs was exploited to develop a cellular assay to identify specific inhibitors of these enzymes. A docking study was performed with the HSD17B11 AlphaFold model, providing a molecular basis of the SDR substrates mimicry by PACs. The safety profile of a representative PAC was established in mice.
Collapse
Affiliation(s)
- Margaux Bossuat
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, F-31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Pauline Rullière
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Nadège Preuilh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Antonio Peixoto
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Jean-Guillaume Gomez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Maroua Bourkhis
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Frédéric Rodriguez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Fernanda Gonçalves
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Isabelle Fabing
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Hafida Gaspard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, F-31077 Toulouse, France
| | - Stéphanie Ballereau
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, F-31077 Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| |
Collapse
|
2
|
Chemical modification of clay nanocomposites for the improvement of the catalytic properties of Lipase A from Candida antarctica. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. eLife 2022; 11:73913. [PMID: 35535493 PMCID: PMC9090334 DOI: 10.7554/elife.73913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.
Collapse
Affiliation(s)
- Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Patrick R A Zanon
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Dymytrii Listunov
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Rullière
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
| | - Jean-Baptiste Izquierdo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Karen Pradines
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Romain Hee
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Maria Vieira de Brito
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Yves Génisson
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
4
|
Mazo N, Navo CD, Peregrina JM, Busto JH, Jiménez-Osés G. Selective modification of sulfamidate-containing peptides. Org Biomol Chem 2020; 18:6265-6275. [PMID: 32618321 DOI: 10.1039/d0ob01061h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid peptides whose N-terminal residues are activated in the form of α-methylisoserine-derived cyclic sulfamidates exhibit rich reactivity as electrophiles, allowing site- and stereoselective modifications at different backbone and side chain positions. The unique properties of this scaffold allow the stereocontrolled late-stage functionalization of the peptide backbone by nucleophilic ring opening with fluorescent probes, thiocarbohydrates and tags for strain-promoted azide-alkyne cycloaddition as well as by installing labile N-terminal affinity tags (biotin) and cytotoxic drugs (chlorambucil) for pH-controlled release. Finally, an unexpected base-promoted acyl group migration from the sulfamidate N-terminus allows fast and quantitative intramolecular modification of nucleophilic side chains on the fully unprotected peptides.
Collapse
Affiliation(s)
- Nuria Mazo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
| |
Collapse
|
5
|
Pop F, Zigon N, Avarvari N. Main-Group-Based Electro- and Photoactive Chiral Materials. Chem Rev 2019; 119:8435-8478. [DOI: 10.1021/acs.chemrev.8b00770] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Flavia Pop
- Laboratoire MOLTECH-Anjou,
UMR 6200 CNRS-Université d’Angers, UFR Sciences, Bât. K, 2 Bd. Lavoisier, 49045 Angers Cedex, France
| | - Nicolas Zigon
- Laboratoire MOLTECH-Anjou,
UMR 6200 CNRS-Université d’Angers, UFR Sciences, Bât. K, 2 Bd. Lavoisier, 49045 Angers Cedex, France
| | - Narcis Avarvari
- Laboratoire MOLTECH-Anjou,
UMR 6200 CNRS-Université d’Angers, UFR Sciences, Bât. K, 2 Bd. Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
6
|
Rullièrea P, Lizeauxa F, Jolyb E, Ballereaua S, Gasparda H, Maravalc V, Chauvinc R, Génissona Y. Fluorinated analogues of lipidic dialkynylcarbinol pharmacophores: synthesis and cytotoxicity in HCT116 cancer cells. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2019. [DOI: 10.17721/fujcv7i1p1-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lipidic alkynylcarbinols (LACs) have been identified as potential antitumor compounds, and a thorough understanding of their pharmacophoric environment is now required to elucidate their biological mode of action. In the dialkynylcarbinol (DAC) series, a specific study of the pharmacophore potential has been undertaken by focusing on the synthesis of three fluorinated derivatives followed by their biological evaluation. This work highlights the requirement of an electron-rich secondary carbinol center as a key structure for cytotoxicity in HCT116 cells.
Collapse
Affiliation(s)
| | | | - Etienne Jolyb
- UMR CNRS 5089, IPBS (Institut de Pharmacologie et de Biologie Structurale)
| | | | | | | | | | | |
Collapse
|
7
|
Bourkhis M, Gaspard H, Rullière P, de Almeida DKC, Listunov D, Joly E, Abderrahim R, de Mattos MC, de Oliveira MCF, Maraval V, Chauvin R, Génisson Y. Skeletal Optimization of Cytotoxic Lipidic Dialkynylcarbinols. ChemMedChem 2018; 13:1124-1130. [PMID: 29603643 DOI: 10.1002/cmdc.201800118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Indexed: 11/07/2022]
Abstract
In line with a recent study of the pharmacological potential of bioinspired synthetic acetylenic lipids, after identification of the terminal dialkynylcarbinol (DAC) and butadiynyl alkynylcarbinol (BAC) moieties as functional antitumor pharmacophoric units, this work specifically addresses the issue of carbon backbone length. A systematic variation of the aliphatic chain length was thus carried out in both the DAC and BAC series. The critical impact of the length of the lipidic skeleton was first confirmed in the racemic series, with the highest cytotoxic activity observed for C17 to C18 backbones. Enantiomerically enriched samples were prepared by asymmetric synthesis of the optimal C18 DAC and C17 BAC derivatives. Samples with upgraded enantiomeric purity were alternatively produced by enzymatic kinetic resolution. Eutomers possessing the S configuration displayed cytotoxicity IC50 values as low as 15 nm against HCT116 cancer cells, the highest level of activity reached to date in this series.
Collapse
Affiliation(s)
- Maroua Bourkhis
- SPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse Cedex 9, France.,05/UR/13-01, LPMLNMH, Carthage University, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - Hafida Gaspard
- SPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Pauline Rullière
- SPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Diana K C de Almeida
- Laboratory of Biotechnology and Organic Synthesis, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Dymytrii Listunov
- SPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse Cedex 9, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Joly
- Institute of Pharmacology and Structural Biology, UMR5089 CNRS/UPS, Department of Structural Biology and Biophysics, Université Paul Sabatier-Toulouse III, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Raoudha Abderrahim
- 05/UR/13-01, LPMLNMH, Carthage University, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - Marcos C de Mattos
- Laboratory of Biotechnology and Organic Synthesis, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Maria C F de Oliveira
- Laboratory of Biotechnology and Organic Synthesis, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Génisson
- SPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| |
Collapse
|
8
|
Widyaya VT, Riga EK, Müller C, Lienkamp K. Sub-micrometer Sized, 3D-Surface-attached Polymer Networks by Microcontact Printing: Using UV-Crosslinking Efficiency to Tune Structure Height. Macromolecules 2018; 54:1409-1417. [PMID: 34404958 PMCID: PMC7611507 DOI: 10.1021/acs.macromol.7b02576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lateral dimensions of micro- and nanostructures obtained by microcontact printing (μCP) can be easily varied by selecting stamps with the desired spacing and pattern. However, the height of these structures cannot be tuned as easily, and in most cases only 2D structures are obtained. Here, we show how the chemical cross-linking properties of polymer inks designed for μCP can be used to obtain 3D structures with heights ranging from 3 to 750 nm using the same μCP stamps. This is technologically relevant because the ink concentration affects the quality and resolution of the printed image, and therefore can only be varied in a certain range. By exploiting the cross-linking efficiency to tune the height, an additional parameter is available to reach the desired structure height without compromising the image quality. The inks were made from copolymers containing a low percentage of different UV cross-linkable repeat units: nitrobenzoxadiazole (NBD), coumarin (COU), and/or benzophenone (BP). The base polymer of the here presented model system was an antimicrobially active poly(oxanorbornene) (SMAMP), however the concept should be transferable to many other polymer backbones. We describe the fabrication and characterization of the printed micro- and nanostructures made from pure SMAMP, NBD-SMAMP, coumarin-SMAMP, BP-SMAMP, BP-NBD-SMAMP and BP-coumarin-SMAMP polymer inks. The photo-dimerization of COU during UV irradiation at λ = 254 nm was confirmed by UV-Vis spectroscopy. Since NBD and COU are fluorescent, the polymer could be visualized by fluorescence microscopy. Additionally, their height profiles were measured by atomic force microscopy (AFM). The heights of the 3D surface-attached polymer networks obtained from the here presented polymer inks correlated with the gel-content of the corresponding unstructured polymer layers, and thus with the cross-linking efficiency of the NBD, COU and BP cross-linkers. Due to being covalently cross-linked, these 3D-surface attached polymer structures were solvent-stable and stable in aqueous surroundings.
Collapse
Affiliation(s)
- Vania Tanda Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Esther K. Riga
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Claas Müller
- Laboratory for Process Technology, Department of Microsystem Engineering (IMTEK), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
9
|
Fan YL, Ke X, Liu M. Coumarin-triazole Hybrids and Their Biological Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3112] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Min Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze river Delta Region; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
10
|
Schömberg F, Zi Y, Vilotijevic I. Lewis-base-catalysed selective reductions of ynones with a mild hydride donor. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00058a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nucleophilic phosphines catalyze efficient 1,2-reductions of ynones employing pinacolborane as a mild hydride donor in the presence of alcohol additives.
Collapse
Affiliation(s)
- F. Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- Jena
- Germany
| | - Y. Zi
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- Jena
- Germany
| | - I. Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- Jena
- Germany
| |
Collapse
|
11
|
Cerqueira AFR, Almodôvar VAS, Neves MGPMS, Tomé AC. Coumarin-Tetrapyrrolic Macrocycle Conjugates: Synthesis and Applications. Molecules 2017; 22:E994. [PMID: 28617340 PMCID: PMC6152750 DOI: 10.3390/molecules22060994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
This review covers the synthesis of coumarin-porphyrin, coumarin-phthalocyanine and coumarin-corrole conjugates and their potential applications. While coumarin-phthalocyanine conjugates were obtained almost exclusively by tetramerization of coumarin-functionalized phthalonitriles, coumarin-porphyrin and coumarin-corrole conjugates were prepared by complementary approaches: (a) direct synthesis of the tetrapyrrolic macrocycle using formylcoumarins and pyrrole or (b) by functionalization of the tetrapyrrolic macrocycle. In the last approach a range of reaction types were used, namely 1,3-dipolar cycloadditions, hetero-Diels-Alder, Sonogashira, alkylation or acylation reactions. This is clearly a more versatile approach, leading to a larger diversity of conjugates and allowing the access to conjugates bearing one to up to 16 coumarin units.
Collapse
Affiliation(s)
- Ana F R Cerqueira
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vítor A S Almodôvar
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Bourkhis M, Listunov D, Gaspard H, Joly E, Abderrahim R, Maraval V, Génisson Y, Chauvin R. Ethynylogation approach in antitumor lipid pharmacochemistry: from dialkynyl-carbinols to trialkynyl-carbinols. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2017. [DOI: 10.17721/fujcv5i1p24-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recently proposed "ethynylogation" pharmacochemical approach, first envisaged in the series of anticancer lipidic dialkynylcarbinols (DACs) H–C≡C–CH(OH)–C≡C–R at the levels of the H–C⋮ and ⋮C–R bonds for R = n-C12H25, is completed here at the level of the (HO)C–H bond. The so-devised mono-lipidic trialkynylcarbinol (TAC) target (HC≡C)2C(OH)–C≡CR and its bis-lipidic counterpart HC≡C–C(OH)(C≡CR)2 were synthesized in 4 steps and with 33 % and 23 % overall yield, respectively. Their antitumor cytotoxicity has been evaluated towards HCT116 cells: while the latter TAC is totally inactive, the former DAC-ethynylogous TAC still exhibits a significant toxicity with an IC50 of 10 µM.
Collapse
Affiliation(s)
| | | | | | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale
| | | | | | | | | | | |
Collapse
|
13
|
Faletrov Y, Brzostek A, Plocinska R, Dziadek J, Rudaya E, Edimecheva I, Shkumatov V. Uptake and metabolism of fluorescent steroids by mycobacterial cells. Steroids 2017; 117:29-37. [PMID: 27718364 DOI: 10.1016/j.steroids.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 11/26/2022]
Abstract
Fluorescent steroids BODIPY-cholesterol (BPCh) and 7-nitrobenzoxadiazole-4-amino-(NBD)-labeled 22-NBD-chelesterol (22NC) as well as synthesized 20-(NBD)-pregn-5-en-3β-ol (20NP) were found to undergo bioconversions by Mycobacterium tuberculosis H37Rv and M. smegmatis mc2 155. The major fluorescent products were determined to be 4-en-3-one derivatives of the compounds. Degradation of NBD fluorophore was also detected in the cases of 22NC and 20NP, but neither NBD degradation nor steroidal part modification were observed for the synthesized 3-(NBD)-cholestane. Mycobacterial 3β-hydroxysteroid dehydrogenases were concluded to be responsible for the formation of the 4-en-3-one derivatives. All the compounds tested were found to cause staining both membrane lipids and cytosolic lipid droplets when incubated with mycobacteria in different manner, demonstrating ability of the steroids to reside in the compartments. The findings reveal a potential of the compounds for monitoring of steroid interactions with mycobacteria and provide information for design of new probes for this purpose.
Collapse
Affiliation(s)
- Yaroslav Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Renata Plocinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Elena Rudaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Irina Edimecheva
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| |
Collapse
|
14
|
Listunov D, Saffon-Merceron N, Joly E, Fabing I, Génisson Y, Maraval V, Chauvin R. Ethynylogation approach in pharmacophore design: from alkynyl-to butadiynyl-carbinols vs antitumoral cytotoxicity. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|