1
|
Sun M, Qiu X, Yuan Z, Xu C, Chen Z. New advances in Traditional Chinese Medicine interventions for epilepsy: where are we and what do we know? Chin Med 2025; 20:37. [PMID: 40098198 PMCID: PMC11917061 DOI: 10.1186/s13020-025-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Epilepsy, one of the most common neurological diseases, affects more than 70 million people worldwide. Anti-seizure drugs targeting membrane ion channels or GABAergic neurotransmission are the first choices for controlling seizures, whereas the high incidence of pharmacoresistance and adverse effects largely restrict the availability of current anti-seizure drugs (ASDs). Traditional Chinese Medicine (TCM) has shown historical evidence-based therapeutic effects for neurological diseases including epilepsy. But until the late 1990s, great efforts in both clinical and experimental fields advanced TCM interventions for epilepsy from evidence-based practices to more systematic neuropharmacological significance, and show new lights on preferable management of epilepsy in the last decade. This review summarized the advances of applying TCM interventions (ranging from herbal medicines and their active ingredients to other strategies such as acupuncture) for epilepsy, followed by associated mechanism theories. The therapeutic potential of TCM interventions for epilepsy as well as its comorbidities turns from somehow debatable to hopeful. Finally, some prospects and directions were proposed to drive further clinical translational research. The future directions of TCM should aim at not only deriving specific anti-epileptic molecules but also illustrating more precise mechanisms with the assistance of advanced multifaceted experimental tools.
Collapse
Affiliation(s)
- Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijian Yuan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhao ZX, Zou QY, Ma YH, Morris-Natschke SL, Li XY, Shi LC, Ma GX, Xu XD, Yang MH, Zhao ZJ, Li YX, Xue J, Chen CH, Wu HF. Recent progress on triterpenoid derivatives and their anticancer potential. PHYTOCHEMISTRY 2025; 229:114257. [PMID: 39209239 DOI: 10.1016/j.phytochem.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cancer poses a significant global public health challenge, with commonly used adjuvant or neoadjuvant chemotherapy often leading to adverse side effects and drug resistance. Therefore, advancing cancer treatment necessitates the ongoing development of novel anticancer agents with diverse structures and mechanisms of action. Natural products remain crucial in the process of drug discovery, serving as a primary source for pharmaceutical leads and therapeutic advancements. Triterpenoids are particularly compelling due to their complex structures and wide array of biological activities. Recent research has demonstrated that naturally occurring triterpenes and their derivatives have the potential to serve as promising candidates for new drug development. This review aims to comprehensively explore the anticancer properties of triterpenoids and their synthetic analogs, with a focus on recent advancements. Various aspects, such as synthesis, phytochemistry, and molecular simulation for structure-activity relationship analyses, are summarized. It is anticipated that triterpenoid derivatives will emerge as notable anticancer agents following further investigation into their mechanisms of action and in vivo studies.
Collapse
Affiliation(s)
- Zi-Xuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Qiong-Yu Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Ying-Hong Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiang-Yuan Li
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lin-Chun Shi
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guo-Xu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zi-Jian Zhao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuan-Xiang Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
| | - Chin-Ho Chen
- Antiviral Drug Discovery Laboratory, Surgical Oncology Research Facility, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hai-Feng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Stępnik K, Kukula-Koch W, Płaziński W. Molecular and Pharmacokinetic Aspects of the Acetylcholinesterase-Inhibitory Potential of the Oleanane-Type Triterpenes and Their Glycosides. Biomolecules 2023; 13:1357. [PMID: 37759757 PMCID: PMC10526139 DOI: 10.3390/biom13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The acetylcholinesterase-inhibitory potential of the oleanane-type triterpenes and their glycosides from thebark of Terminalia arjuna (Combreatceae), i.e.,arjunic acid, arjunolic acid, arjungenin, arjunglucoside I, sericic acid and arjunetin, is presented. The studies are based on in silico pharmacokinetic and biomimetic studies, acetylcholinesterase (AChE)-inhibitory activity tests and molecular-docking research. Based on the calculated pharmacokinetic parameters, arjunetin and arjunglucoside I are indicated as able to cross the blood-brain barrier. The compounds of interest exhibit a marked acetylcholinesterase inhibitory potential, which was tested in the TLC bioautography test. The longest time to reach brain equilibrium is observed for both the arjunic and arjunolic acids and the shortest one for arjunetin. All of the compounds exhibit a high and relatively similar magnitude of binding energies, varying from ca. -15 to -13 kcal/mol. The superposition of the most favorable positions of all ligands interacting with AChE is analyzed. The correlation between the experimentally determined IC50 values and the steric parameters of the molecules is investigated. The inhibition of the enzyme by the analyzed compounds shows their potential to be used as cognition-enhancing agents. For the most potent compound (arjunglucoside I; ARG), the kinetics of AChE inhibition were tested. The Michaelis-Menten constant (Km) for the hydrolysis of the acetylthiocholine iodide substrate was calculated to be 0.011 mM.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
4
|
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:5203-5219. [PMID: 36476115 DOI: 10.1080/10408398.2022.2153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Edible pentacyclic triterpenes (PTs) are a group of nutraceutical ingredients commonly distributed in human diets. Existing evidence has proven that they have various biological functions, including anticancer, antioxidant, anti-inflammatory and hypoglycemic activities, making them as "functional factor" for a long time. However, their properties of strong hydrophobicity, poor permeability, poor absorption, and rapid metabolism result in low oral bioavailability, which dramatically hinders their efficacy for use. Recently, free PTs have successively been found to self-assemble or co-assemble into self-contained nanostructures with enhanced water dispersibility and oral bioavailability, which seems to be an efficient processing method for increased oral efficacy. Of particular interest, formulating them into nanostructures can also be introduced as functional delivery carriers for bioactive compounds or drugs with various advantages, such as improved stability, controlled release, enhanced oral bioavailability, synergistic bioactivity, and targeted delivery. This review systematically summarized the chemical structures, plant sources, bioactivities, absorption, metabolism, and oral bioavailability of PTs. Notably, we emphasized their self-assembly properties and emerging role as functional delivery carriers for nutrients, suggesting that PT nanostructures are not only efficient oral forms when introduced into foods but also functional delivery materials for nutrients to expand their commercial food applications.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Chen J, Shen K, Fan L, Hu H, Li T, Zhang Y, Gao H. Integrative medicine in treating post-stroke depression: Study protocol for a multicenter, prospective, randomized, controlled trial. Front Psychol 2022; 13:923506. [PMID: 36110277 PMCID: PMC9469014 DOI: 10.3389/fpsyg.2022.923506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is one of the most common neuropsychiatric diseases in patients with stroke, and it can increase the disability rate, mortality, and recurrence rate of stroke. Currently, many clinical studies have indicated that traditional Chinese medicine (TCM), such as acupuncture and herbs, Western medicine, rehabilitation, repeated transcranial magnetic stimulation, and other treatment methods, are effective in treating PSD. However, no study has formulated a comprehensive treatment plan that integrates TCM, Western medicine, and rehabilitation for PSD. Thus, this trial aims to assess the efficacy and safety of integrative medicine for treating PSD. METHODS This multicenter, prospective, randomized, controlled study aims to form a set of effective clinical treatment schemes that integrate TCM, Western medicine, and rehabilitation for PSD. A total of 202 participants recruited from four centers will be randomized into either the integrative medicine or standard care group. Standard care-basic treatment, general nursing care, and exercise therapy-will be provided to all participants. The integrative medicine group will also receive acupuncture, Chinese herbs, and repeated transcranial magnetic stimulation (rTMS). Participants will receive acupuncture and rTMS treatments five times per week for 4 weeks and will be administered Chinese herbs, basic treatment, general nursing care, and exercise therapy for 4 weeks. The primary outcomes include the Hamilton Depression Scale (HAMD), Self-Rating Depression Scale (SDS), and Activity of Daily Living Scale (ADL). And the secondary outcomes include the Montreal Cognitive Assessment Scale, the Fugl-Meyer Assessment (FMA) Scale, and the Pittsburgh Sleep Quality Index (PSQI). All outcome measures will be evaluated at baseline, week 4 (the end of the treatment courses), and week 8 (the end of follow-up). Safety assessments will be performed throughout the study. DISCUSSION This study is expected to verify the efficacy and safety of integrative medicine for treating PSD, providing an evidence-based clinical reference for the future development of a standardized scheme. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier: NCT05187975.
Collapse
Affiliation(s)
- Jing Chen
- Department of Rehabilitation, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Shen
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijuan Fan
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hantong Hu
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tieniu Li
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiting Zhang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Gao
- Department of Acupuncture, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Zhang B, Yang SL, Li X, Zhang QR, Tian MY, Wang XL, Wang SJ. Structures and neuroprotective activities of triterpenoids from Cynomorium coccineum subsp. songaricum (Rupr.) J. Leonard. PHYTOCHEMISTRY 2022; 198:113155. [PMID: 35259348 DOI: 10.1016/j.phytochem.2022.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Cynomorium coccineum subsp. songaricum (Rupr.) J. Leonard has been widely used as a Chinese herbal remedy or a functional food for treating symptoms of aging or neurodegenerative diseases. A further investigation on the finding of active constituents led to the isolation and identification of four previously undescribed triterpenoids, together with 20 known compounds. Their structures were elucidated by extensive spectroscopic analysis (IR, NMR, HRMS, and CD). Sixteen compounds showed significant neuroprotective effects against glutamate-induced or oxygen-glucose deprivation-induced SK-N-SH cell death. Our findings revealed the active constituents of C. coccineum subsp. songaricum and indicated that both oleanane-type and ursane-type triterpenes could be valuable platforms for neurodegenerative agents based on primary structure-activity relationship analysis.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Sheng-Li Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qian-Ru Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Meng-Yin Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Su-Juan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
7
|
Sun J, Duan Z, Zhang Y, Cao S, Tang Z, Abozeid A. Metabolite Profiles Provide Insights into Underlying Mechanism in Bupleurum (Apiaceae) in Response to Three Levels of Phosphorus Fertilization. PLANTS (BASEL, SWITZERLAND) 2022; 11:752. [PMID: 35336634 PMCID: PMC8952368 DOI: 10.3390/plants11060752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) deficiency affects plant yield and quality, yet at the same time, excessive phosphorus application does not necessarily promote the growth of plants. How to maintain a balance between biomass accumulation and phosphorus application is a problem. Therefore, the purpose of this research was to explore the relationship between yield and quality of Bupleurum and phosphorus fertilization, based on three phosphorus fertilization levels (20 kg∙ha-1; 10 kg∙ha-1; and 0 kg∙ha-1). We adopted gas chromatography-mass spectrometry to assess the response of primary metabolites of different plant tissues (flowers, main shoots, lateral shoots and roots) to phosphorus fertilization. At the same time, high-performance liquid chromatography was used to quantify saikosaponin A and saikosaponin D, the main active ingredients of Bupleurum. Our research showed that low phosphorus level application has a positive impact on the yield and quality of Bupleurum, especially the above-ground parts increasing the fresh weight of flowers and lateral shoots and the length of main shoots, and moreover, increasing the saikosaponins content in all above-ground parts while decreasing the content in roots which show no significance increase in fresh weight and length. However, high phosphorus level showed a negative impact as it decreases the saikosaponins content significantly in flowers and roots. Furthermore, phosphorus application changed the proportion of saikosaponins, promoting the content of saikosaponin A and inhibiting the content of saikosaponin D in most organs of Bupleurum. Therefore, we can say that high phosphorus application is not preferable to the yield and quality of Bupleurum. To identify the metabolic pathways and special key metabolites, a total of 73 metabolites were discovered, and four differential metabolites-ether, glycerol, chlorogenic and L-rhamnose-were considered to be the key metabolites of Bupleurum's response to phosphorus fertilization. Furthermore, Bupleurum's response to phosphorus fertilization was mainly related to metabolic pathways, such as starch and sucrose metabolism and galactose metabolism. Under the phosphorus level, the content of sugars, organic acids and their derivatives, polyols and their derivatives and alkyl were upregulated in flowers. Furthermore, the contents of compounds in the main shoot and lateral shoots showed the same upward trend, except glycosides and polyols and their derivatives.
Collapse
Affiliation(s)
- Jialin Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.S.); (Z.D.); (Y.Z.)
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, China
| | - Zejia Duan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.S.); (Z.D.); (Y.Z.)
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.S.); (Z.D.); (Y.Z.)
| | - Sisi Cao
- Medical Department, Harbin Vocational & Technical College, Harbin 150040, China;
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (J.S.); (Z.D.); (Y.Z.)
| | - Ann Abozeid
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom 32511, Egypt
| |
Collapse
|
8
|
Jiang X, Shen P, Zhou J, Ge H, Raj R, Wang W, Yu B, Zhang J. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages. Bioorg Med Chem Lett 2021; 58:128523. [PMID: 34973341 DOI: 10.1016/j.bmcl.2021.128523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
For the discovery of new pentacyclic triterpenes as a potential anti-inflammatory agent, microbial transformation of uvaol by Penicilium griseofulvum CICC 40293 and Streptomyces griseus ATCC 13273 was investigated. Stereoselective hydroxylation and epoxidation reactions were observed in the biotransformation. Moreover, six new metabolites were isolated and structurally elucidated by HR-ESI-MS and NMR spectrum. All the compounds were evaluated upon the inhibitory effects of nitric oxide (NO) release in RAW 264.7 cells induced by lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1). Among them, compound 3 (13, 28-epoxy-3β, 7β, 21β-trihydroxy-urs-11-ene) with the unique epoxy structure and compound 5 (3β, 21β, 24, 28-tetrahydroxy-urs-12-en-30-oic acid), exhibited a considerable inhibitory effect on both models while compound 2 (urs-12-ene-3β, 7β, 21β, 28-tetraol) showed a significant bias in the LPS-induced inflammatory response with IC50 value of 2.22 μM. Therefore, this study could provide some insights on the discovery of the pentacyclic triterpene leads for the treatment of either DAMPs or PAMPs triggered inflammation.
Collapse
Affiliation(s)
- Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jing Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Richa Raj
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China; ZhenPing Expert Workstation for Zhang Jian, Zhenping, Ankang, Shaanxi, 725699, PR China.
| |
Collapse
|
9
|
UV-guided isolation of enantiomeric polyacetylenes from Bupleurum scorzonerifolium Willd. with inhibitory effects against LPS-induced NO release in BV-2 microglial cells. Bioorg Chem 2021; 119:105521. [PMID: 34871788 DOI: 10.1016/j.bioorg.2021.105521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022]
Abstract
UV-guided fractionation led to the isolation of thirteen new polyacetylenes (1-13) from the roots of Bupleurum scorzonerifolium Willd. All polyacetylenes were analyzed as racemates since the lack of optical activity and Cotton effects in the ECD spectra. The sequent chiral-phase HPLC resolution successfully gave twelve pairs of enantiomers 1a/1b and 3a/3b-13a/13b. Their structures were elucidated based on the HRESIMS and NMR data analyses. The absolute configurations were determined by the combination of Snatzke's method, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Using Griess methods and MTT assays, polyacetylenes 1a, 3a, 4a/4b-12a/12b, and 13a displayed inhibitory activities against LPS-induced NO release in BV-2 microglial cells.
Collapse
|
10
|
Suárez Montenegro ZJ, Álvarez-Rivera G, Sánchez-Martínez JD, Gallego R, Valdés A, Bueno M, Cifuentes A, Ibáñez E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021; 10:foods10071507. [PMID: 34209864 PMCID: PMC8306477 DOI: 10.3390/foods10071507] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
The neuroprotective potential of 32 natural extracts obtained from olive oil by-products was investigated. The online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption allowed the selective enrichment of olive leaves extracts in different terpenoids’ families. Seven commercial adsorbents based on silica gel, zeolite, aluminum oxide, and sea sand were used with SFE at three different extraction times to evaluate their selectivity towards different terpene families. Collected fractions were analyzed by gas chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS) to quantify the recoveries of monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30). A systematic analysis of the neuroprotective activity of the natural extracts was then carried out. Thus, a set of in vitro bioactivity assays including enzymatic (acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), and anti-inflammatory (lipoxidase (LOX)), as well as antioxidant (ABTS), and reactive oxygen and nitrogen species (ROS and RNS, respectively) activity tests were applied to screen for the neuroprotective potential of these extracts. Statistical analysis showed that olive leaves adsorbates from SS exhibited the highest biological activity potential in terms of neuroprotective effect. Blood–brain barrier permeation and cytotoxicity in HK-2 cells and human THP-1 monocytes were studied for the selected olive leaves fraction corroborating its potential.
Collapse
|
11
|
Zhou J, He X, Sun R, Yu Z, Wang C, Deng S, Zhang B, Huang S, Han C, Li D. Lignans from Bupleurum marginatum and their antioxidant activity. Nat Prod Res 2021; 36:5016-5021. [PMID: 33908316 DOI: 10.1080/14786419.2021.1917570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new aryltetralin lignan, bupleroid A (1), along with ten known analogues (2-11) were isolated from Bupleurum marginatum. The structures of these isolates were determined by 1D and 2D NMR, HRESIMS, and ECD data analysis. In addition, the DPPH radical scavenging capacities of all compounds were evaluated. Compound 6 exhibited good DPPH radical scavenging activity at a concentration of 50 μM.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xin He
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Rongjin Sun
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Zhenlong Yu
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chao Wang
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sa Deng
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Baojing Zhang
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Shanshan Huang
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Chunhui Han
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Dawei Li
- College of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
12
|
Cao TQ, Vu NK, Woo MH, Min BS. New polyacetylene and other compounds from Bupleurum chinense and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li D, Liu D, Lv M, Gao P, Liu X. Isolation of triterpenoid saponins from Medicago sativa L. with neuroprotective activities. Bioorg Med Chem Lett 2020; 30:126956. [PMID: 31932222 DOI: 10.1016/j.bmcl.2020.126956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 02/02/2023]
Abstract
Three new pentacyclic triterpenoid saponins (1-3), together with medicagenic acid (4) were isolated and purified from 70% EtOH extract of Medicago sativa L. by different column chromatographic and semi-preparative HPLC. Their structures were established by direct interpretation of their spectral data, mainly HR-ESI-MS, 1D-NMR, 2D-NMR, and chemical methods, as well as comparison with literature data. Additionally, all isolates were evaluated for their neuroprotective activities against H2O2-induced damage in human neuroblastoma SHSY5Y cells. As a results, compounds 1 and 2 (67.14% and 73.05%) exhibited potent neuroprotective activities. These findings provide new insights into developing better treatment of neurodegenerative diseases for M. sativa in the future.
Collapse
Affiliation(s)
- Danqi Li
- Institute of Functional Molecules, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China
| | - Da Liu
- Institute of Functional Molecules, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China; College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China
| | - Mengchao Lv
- Institute of Functional Molecules, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China; College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China
| | - Pinyi Gao
- Institute of Functional Molecules, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China; College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China.
| | - Xuegui Liu
- Institute of Functional Molecules, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China; College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, PR China.
| |
Collapse
|
14
|
Liu XG, Lv MC, Huang MY, Sun YQ, Gao PY, Li DQ. A network pharmacology study on the triterpene saponins from Medicago sativa L. for the treatment of Neurodegenerative diseases. J Food Biochem 2019; 43:e12955. [PMID: 31368545 DOI: 10.1111/jfbc.12955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive and irreversible, is a kind of complex illnesses, and the long-term therapy which is frequently associated with adverse side effects. Medicago sativa L., widely consumed as a vegetable, has the effects of improving memory and relieving central nervous system diseases. However, there are less studies on its specific mechanism for NDDs. In this investigation, we applied a method of network pharmacology, which combined molecular docking and network analysis to decipher the mechanisms of M. sativa in NDDs. The pharmacological system generated 55 triterpene saponins from M. sativa, and predicted 27 potential targets with 100 pathways in the treatment of NDDs. As a result, 13 compounds, 10 target proteins, and 6 signaling pathways were found to play important roles in the treatment of NDDs. In addition, in vitro experiments of isolates confirmed activities for NDDs, which were consistent with the results of network pharmacology prediction. PRACTICAL APPLICATIONS: Medicago sativa L. has been widely consumed as a vegetable, which possesses many nutritional components. As a functional food stuff, M. sativa can improve human health, such as memory improving activities, relieving central nervous system diseases, immunomodulatory, antioxidant, anticancer, and anti-inflammatory. In this article, the mechanism of triterpene saponins from M. sativa against NDDs was successfully predicted by network pharmacology method. The results will serve as a reference of M. sativa against NDDs.
Collapse
Affiliation(s)
- Xue-Gui Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China.,Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Meng-Chao Lv
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Ming-Yuan Huang
- Shenyang Institute of Science and Technology, Shenyang, P.R. China
| | - Yu-Qiu Sun
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Pin-Yi Gao
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, P.R. China.,Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, P.R. China
| | - Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, P.R. China
| |
Collapse
|
15
|
Abstract
BACKGROUND Bupleurum chinense, a well-known Traditional Chinese Medicine, has been used for thousands of years in China. In this study, we would suggest that Bupleurum polysaccharides (BPS) could improve the prognosis of sepsis through its impact on redistribution of BMCs, which triggers immune reversal in late sepsis. METHODS BALB/c mice were divided into five groups: sham burn group, burn plus P aeruginosa group, burn plus P aeruginosa with BPS (40 mg/kg, 100 mg/kg, and 250 mg/kg) treatment group, and they were sacrificed at post-burn day (PBD) 0, 3, 5, and 7. BMCs, liver cells, and dendritic cells (DCs) were harvested. Flow cytometry was used to determine the change of phenotypes of DCs and isolate these cells. Cytometric beads array was utilized to analyze the level of inflammatory factors. Cell therapy of BMCs, liver cells, and DCs was administrated to explore the protective role of regional organ immunity. RESULTS BPS could decrease the lethality of burn sepsis in a dose-dependent fashion and increase both the percentage of CD11cCD45RB DCs in bone marrow (BM) and liver and the number of BMCs and liver cells significantly. Cell therapy of BMCs, liver cells, and CD11cCD45RB DCs at PBD7 could protect septic mice from sepsis. CONCLUSION BPS has shown its potential in promoting the prognosis of post-burn sepsis through its effect on immune redistribution of BMCs, especially via differentiation of CD11cCD45RB DC cells in BM and nonimmune organs to induce immune reversal in late sepsis.
Collapse
|
16
|
Constituents of Essential Oil and Lipid Fraction from the Aerial Part of Bupleurum scorzonerifolium Willd. (Apiaceae) from Different Habitats. Molecules 2018; 23:molecules23061496. [PMID: 29925820 PMCID: PMC6100243 DOI: 10.3390/molecules23061496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 11/16/2022] Open
Abstract
The essential oils and lipid fraction extracted from the aerial parts of Bupleurum scorzonerifolium were determined by a GC-MS method. In total, up to 67 components were identified. cis-β-Ocimene, trans-β-ocimene, limonene, α-pinene, α-copaene, β-elemene, and caryophyllene oxide were recognized as consistent components of the essential oil extracted from the aerial parts of B. scorzonerifolium, regardless of the habitat. The content of these components varied from traces to a significant amount. The volume of the lipid fraction varied from 2.73 to 9.38%. In total, 23 components were identified, including 20 fatty acids, two sterols, and one ketone. The major fatty acid components identified were 16:0, 18:2n9, and 18:1n9. The total content of these fatty acids reached up to 76.19%. The lipid fraction of the aerial parts of B. scorzonerifolium predominantly contained MUFA and PUFA, which confirmed the pharmacological value of the species. The main factors affecting the composition of essential oils and lipid fractions of B. scorzonerifolium are environmental ones that determine the moisture supply to the plants in semiarid and arid areas.
Collapse
|
17
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Sun Y, Xu X, Zhang J, Chen Y. Treatment of depression with Chai Hu Shu Gan San: a systematic review and meta-analysis of 42 randomized controlled trials. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:66. [PMID: 29454341 PMCID: PMC5816377 DOI: 10.1186/s12906-018-2130-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
Abstract
Background Depression is a common mental disorder. Chai Hu Shu Gan San, a traditional Chinese medicine, is used to treat depression empirically. We present a systematic review and meta-analysis of the therapeutic efficacy and safety of Chai Hu Shu Gan San in treating depression. Methods Several databases, including PubMed, China National Knowledge Internet, Wanfang, Chongqing VIP, and the Cochrane library, were systematically searched from their date of foundation to January 1, 2017. In this review, wehave included randomized control trials that compared Chai Hu Shu Gan San (or its combination with a regular Western medicine) with a regular Western medicine alone for the treatment of depression. Two investigators independently extracted and analyzed the data using RevMan 5.2.0 software. Mean difference (with a 95% confidence interval) was used as efficacy indices for outcomes. Results We included 42 studies involving 3234 patients with depression in 15 different types of diseases. Meta analyses showed better effect of Chai Hu Shu Gan San than fluoxetine for pure depression (MD = − 1.59, from − 2.82 to − 0.37, 4 trials, I2 = 26%), for post-stroke depression (MD = − 4.20, from − 6.20 to − 2.19, 7 trials, I2 = 96%), and for postpartum depression (MD = − 4.10, from − 7.48 to − 0.72 7 trials, I2 = 86%). None of the articles reported severe adverse events of oral administration of Chai Hu Shu Gan San. Furthermore, any adverse effects of using Chai Hu Shu Gan San alone were fewer than those of regular Western medicines. Conclusions This review found that Chai Hu Shu Gan San has some advantages in treating depression, especially post-stroke depression and post-partum depression. A meticulously designed and conducted randomized control trial is needed for further evaluation.
Collapse
|
19
|
Synthesis, biological evaluation and structure-activity relationship studies of hederacolchiside E and its derivatives as potential anti-Alzheimer agents. Eur J Med Chem 2018; 143:376-389. [DOI: 10.1016/j.ejmech.2017.11.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022]
|
20
|
Mahdzir MA, Shilpi JA, Mahmud N, Ramasamy S, Awang K. Chemical Constituents from Walsura pinnata (Meliaceae). Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A phytochemical study on the bark of Walsura pinnata has led to the isolation of a new oleanane triterpene acid, 3-oxo-olean-9(11),12-dien-28-oic acid (1), together with nine known compounds (2–10). Their structures were established on the basis of the detailed spectroscopic analysis, including one- and two-dimensional NMR, ESI-MS and HR-ESI-MS techniques. Compounds 2, 3, 5, 6 and 8 were isolated from W. pinnata for the first time. Compounds 3 and 4 showed in vitro growth inhibitory activity against two human cancer cell lines MCF-7 and SK-OV-3 with IC50 values within the range of 8.85 - 18.28 μg/mL. To the best of our knowledge, this is the first report on the cytotoxic activity of compound 3 towards both cancer cell lines.
Collapse
Affiliation(s)
- Mohamad A. Mahdzir
- Department of Chemistry, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Norfaizah Mahmud
- Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sujatha Ramasamy
- Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
21
|
Inhibition of Nitric Oxide Production in BV2 Microglial Cells by Triterpenes from Tetrapanax papyriferus. Molecules 2016; 21:459. [PMID: 27070561 PMCID: PMC6273476 DOI: 10.3390/molecules21040459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 11/24/2022] Open
Abstract
It is well known that activated microglia produce nitric oxide (NO), which has an important role in the pathophysiology of several neurodegenerative diseases such as Alzheimer’s disease. In the course of searching for novel therapeutic agents from medicinal plants against neuroinflammatory diseases, the methanolic extract of Tetrapanax papyriferus was found to have significant NO inhibitory activity in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. Nine oleanane-type triterpenes, including two new compounds, epipapyriogenin C-3-O-β-d-glucopyranoside (6) and 11-O-butylpapyrioside LIIc (9), were isolated from the leaves and stems of Tetrapanax papyriferus. The structures of these compounds were elucidated with 1D- and 2D-NMR and MS data. Among these Δ11,13 oleanane-type triterpenes, compound 3 showed significant NO inhibitory activity in BV-2 cells, reducing the LPS-induced expression of COX-2 and pro-inflammatory cytokines such as TNF-α and IL-6. Compounds 7 and 9 also showed NO inhibitory activities among the Δ12 oleanane-type triterpene saponins. These results show that oleanane-type triterpenes isolated from T. papyriferus could be a potential natural resource of NO inhibitors used in the treatment of neurodegenerative disorders.
Collapse
|