1
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Arachchilage Hasitha Maduranga Karunarathne W, Hyun Choi Y, Lee MH, Kang CH, Kim GY. Gamma-aminobutyric acid (GABA)-mediated bone formation and its implications for anti-osteoporosis strategies: Exploring the relation between GABA and GABA receptors. Biochem Pharmacol 2023; 218:115888. [PMID: 38084676 DOI: 10.1016/j.bcp.2023.115888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Osteoporosis is a significant global health concern, linked to reduced bone density and an increased fracture risk, with effective treatments still lacking. This study explored the potential of gamma-aminobutyric acid (GABA) and its receptors as a novel approach to promote osteogenesis and address osteoporosis. GABA concentrations up to 10 mM were well-tolerated by MC3T3-E1 preosteoblast, stimulating osteoblast differentiation and mineralization in a concentration- and time-dependent manner. In vivo experiments with zebrafish larvae demonstrated the ability of GABA to improve vertebral formation and enhanced bone density, indicating the potential therapeutic value for osteoporosis. Notably, GABA countered the adverse effects of prednisolone on vertebral formation, bone density, and osteogenic gene expression in zebrafish larvae, suggesting a promising therapeutic solution to counteract corticosteroid-induced osteoporosis. Moreover, our study highlighted the involvement of GABA receptors in mediating the observed osteogenic effects. By using GABAA, GABAB, and GABAC receptor antagonists, we demonstrated that blocking these receptors attenuated GABA-induced osteoblast differentiation and vertebral formation in both MC3T3-E1 cells and zebrafish larvae, underscoring the importance of GABA receptor interactions in promoting bone formation. In conclusion, these findings underscore the osteogenic potential of GABA and its ability to mitigate the detrimental effects of corticosteroids on bone health. Targeting GABA and its receptors could be a promising strategy for the development of novel therapeutic interventions to address osteoporosis. However, further investigations are warranted to fully elucidate the underlying molecular mechanism of GABA and its clinical applications in treating osteoporosis.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Mi-Hwa Lee
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Chang-Hee Kang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
3
|
Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3. Molecules 2021; 26:molecules26237166. [PMID: 34885749 PMCID: PMC8659031 DOI: 10.3390/molecules26237166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective aryl benzylamine-based inhibitors were designed and synthesised as potential agents for prostate cancer therapeutics through structure-based design, using a previously built homology model with docking studies. Potent, selective, low nanomolar IC50 17β-HSD3 inhibitors were discovered using N-(2-([2-(4-chlorophenoxy)phenylamino]methyl)phenyl)acetamide (1). The most potent compounds have IC50 values of approximately 75 nM. Compound 29, N-[2-(1-Acetylpiperidin-4-ylamino)benzyl]-N-[2-(4-chlorophenoxy)phenyl]acetamide, has an IC50 of 76 nM, while compound 30, N-(2-(1-[2-(4-chlorophenoxy)-phenylamino]ethyl)phenyl)acetamide, has an IC50 of 74 nM. Racemic C-allyl derivative 26 (IC50 of 520 nM) was easily formed from 1 in good yield and, to determine binding directionality, its enantiomers were separated by chiral chromatography. Absolute configuration was determined using single crystal X-ray crystallography. Only the S-(+)-enantiomer (32) was active with an IC50 of 370 nM. Binding directionality was predictable through our in silico docking studies, giving confidence to our model. Importantly, all novel inhibitors are selective over the type 2 isozyme of 17β-HSD2 and show <20% inhibition when tested at 10 µM. Lead compounds from this series are worthy of further optimisation and development as inhibitors of testosterone production by 17β-HSD3 and as inhibitors of prostate cancer cell growth.
Collapse
|
4
|
Li H, Wu Y, Huang N, Zhao Q, Yuan Q, Shao B. γ-Aminobutyric Acid Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Inducing TNFAIP3. Curr Gene Ther 2021; 20:152-161. [PMID: 32951573 DOI: 10.2174/1566523220999200727122502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteoporosis is the most common metabolic bone disease. There is still an unmet need for novel therapeutic agents that could be beneficial as osteoporosis treatments. It has been reported that the neurotransmitter γ-aminobutyric acid (GABA) might be associated with human bone formation. However, the precise mechanism remains unclear. OBJECTIVE To investigate the effect of GABA on bone metabolism and explore the possible role of TNFAIP3 in this process. METHODS GABA had little effect on the proliferation of human mesenchymal stem cells (hMSCs) and RAW 264.7 cells, as indicated by the cell counting kit-8 (CCK-8) assay. The results showed that GABA enhanced the intensity of ALP staining, ALP activity, and accumulation of Ca2+ mineralized nodules in hMSCs during osteogenic induction. RESULTS The qRT-PCR results indicated that GABA treatment significantly increased the mRNA expression of osteogenic genes in hMSCs. In RAW 264.7 cells, TRAP staining showed that GABA did not alter the number or size of osteoclasts or the expression of osteoclastic genes, which suggests that GABA does not affect osteoclastic differentiation. Mechanistically, GABA treatment significantly induced the sustained expression of TNFAIP3. Furthermore, by knocking down TNFAIP3, the osteogenic effect of GABA was antagonized, which suggests that TNFAIP3 mediates the effects of GABA in hMSCs. CONCLUSION Our results suggested that GABA treatment positively regulated osteogenic differentiation by upregulating TNFAIP3, while no obvious effect on osteoclastic differentiation was detected. Therefore, our results provide a potential gene therapy for the treatment of osteoporosis and low bone mineral density.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Maltais R, Roy J, Poirier D. Turning a Quinoline-based Steroidal Anticancer Agent into Fluorescent Dye for its Tracking by Cell Imaging. ACS Med Chem Lett 2021; 12:822-826. [PMID: 34055232 DOI: 10.1021/acsmedchemlett.1c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
RM-581 is an aminosteroid derivative comprised of a steroid core and a quinoline side chain showing potent cytotoxic activity on several types of cancer cells but for which the mechanism of action (MoA) remains to be fully elucidated. The opportunity to turn RM-581 into a fluorescent probe was explored because the addition of a N-dimethyl group was recently reported to induce fluorescence to quinoline derivatives. After the chemical synthesis of the N-dimethyl analogue of RM-581 (RM-581-Fluo), its fluorescent properties, as well as its cytotoxic activity in breast cancer MCF-7 cells, were confirmed. A cell imaging experiment in MCF-7 cells using confocal microscopy then revealed that RM-581-Fluo accumulated into the endoplasmic reticulum (ER) as highlighted by its colocalization with an ER-Tracker dye. This work provides a new tool for RM-581 MoA investigations as well as being a relevant example of a tailor-made quinolone-fluorescent version of a bioactive molecule.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
6
|
Cheng Y, Yang Y, Wu Y, Wang W, Xiao L, Zhang Y, Tang J, Huang YD, Zhang S, Xiang Q. The Curcumin Derivative, H10, Suppresses Hormone-Dependent Prostate Cancer by Inhibiting 17β-Hydroxysteroid Dehydrogenase Type 3. Front Pharmacol 2020; 11:637. [PMID: 32457626 PMCID: PMC7227374 DOI: 10.3389/fphar.2020.00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/21/2020] [Indexed: 01/31/2023] Open
Abstract
The 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) enzyme is a potential therapeutic target for hormone-dependent prostate cancer, as it is the key enzyme in the last step of testosterone (T) biosynthesis. A curcumin analog, H10, was optimized for inhibiting T production in LC540 cells that stably overexpressed 17β-HSD3 enzyme (LC540 [17β-HSD3]) (P < 0.01), without affecting progesterone (P) synthesis. H10 downregulated the production of T in the microsomal fraction of rat testes containing the 17β-HSD3 enzyme from 100 to 78.41 ± 7.41%, 51.86 ± 10.03%, and 45.14 ± 8.49% at doses of 10, 20, and 40 μM, respectively. There were no significant differences among the groups with respect to the protein expression levels of 17β-HSD3, 3βHSD1, CYP17a1, CYP11a1, and STAR, which participate in 17β-HSD3-mediated conversion of androgens to T (P > 0.05). This indicated that H10 only inhibited the enzymatic activity of 17β-HSD3 in vitro. Furthermore, H10 inhibited the adione-stimulated growth of xenografts established from LNCaP cells in nude mice in vivo. We conclude that H10 could serve as an effective inhibitor of 17β-HSD3, which in turn would inhibit the biosynthesis of androgens and progression of prostate cancer.
Collapse
Affiliation(s)
- Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wencheng Wang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Lichun Xiao
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Yifan Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Jianzhong Tang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Ya-Dong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R&D Center of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Maltais R, Ngueta Djiemeny A, Roy J, Barbeau X, Lambert JP, Poirier D. Design and synthesis of dansyl-labeled inhibitors of steroid sulfatase for optical imaging. Bioorg Med Chem 2020; 28:115368. [PMID: 32122754 DOI: 10.1016/j.bmc.2020.115368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Steroid sulfatase (STS) is an important enzyme regulating the conversion of sulfated steroids into their active hydroxylated forms. Notably, the inhibition of STS has been shown to decrease the levels of active estrogens and was translated into clinical trials for the treatment of breast cancer. Based on quantitative structure-activity relationship (QSAR) and molecular modeling studies, we herein report the design of fluorescent inhibitors of STS by adding a dansyl group on an estrane scaffold. Synthesis of 17α-dansylaminomethyl-estradiol (7) and its sulfamoylated analog 8 were achieved from estrone in 5 and 6 steps, respectively. Inhibition assays on HEK-293 cells expressing exogenous STS revealed a high level of inhibition for compound 7 (IC50 = 69 nM), a value close to the QSAR model prediction (IC50 = 46 nM). As an irreversible inhibitor, sulfamate 8 led to an even more potent inhibition in the low nanomolar value (IC50 = 2.1 nM). In addition, we show that the potent STS inhibitor 8 can be employed as an optical imaging tool to investigate intracellular enzyme sub-localization as well as inhibitory behavior. As a result, confocal microscopy analysis confirmed good penetration of the STS fluorescent inhibitor 8 in cells and its localization in the endoplasmic reticulum where STS is localized.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Adrien Ngueta Djiemeny
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Xavier Barbeau
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
Cortés-Benítez F, Roy J, Perreault M, Maltais R, Poirier D. A- and D-Ring Structural Modifications of an Androsterone Derivative Inhibiting 17β-Hydroxysteroid Dehydrogenase Type 3: Chemical Synthesis and Structure–Activity Relationships. J Med Chem 2019; 62:7070-7088. [DOI: 10.1021/acs.jmedchem.9b00624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Francisco Cortés-Benítez
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Quebéc—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Biological Systems, Biological and Health Sciences Division, Metropolitan Autonomous University—Campus Xochimilco (UAM-X), Mexico City 04960, Mexico
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Quebéc—Research Center, Québec, Québec G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Quebéc—Research Center, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Quebéc—Research Center, Québec, Québec G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Quebéc—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
9
|
Maffeis V, Mavreas K, Monti F, Mamais M, Gustavsson T, Chrysina ED, Markovitsi D, Gimisis T, Venturini A. Multiscale time-resolved fluorescence study of a glycogen phosphorylase inhibitor combined with quantum chemistry calculations. Phys Chem Chem Phys 2019; 21:7685-7696. [PMID: 30912774 DOI: 10.1039/c8cp07538g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A fluorescence study of N1-(β-d-glucopyranosyl)-N4-[2-acridin-9(10H)-onyl]-cytosine (GLAC), the first fluorescent potent inhibitor of glycogen phosphorylase (GP), in neutral aqueous solution, is presented herein. Quantum chemistry (TD-DFT) calculations show the existence of several conformers both in the ground and first excited states. They result from rotations of the acridone and cytosine moieties around an NH bridge which may lead to the formation of non-emitting charge-transfer states. The fingerprints of various conformers have been detected by time-resolved fluorescence spectroscopy (fluorescence upconversion and time-correlated single photon counting) and identified using as criteria their energy, polarization and relative population resulting from computations. Such an analysis should contribute to the design of new GP inhibitors with better fluorescence properties, suitable for imaging applications.
Collapse
Affiliation(s)
- Valentin Maffeis
- LIDYL, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mah S, Jang J, Song D, Shin Y, Latif M, Jung Y, Hong S. Discovery of fluorescent 3-heteroarylcoumarin derivatives as novel inhibitors of anaplastic lymphoma kinase. Org Biomol Chem 2019; 17:186-194. [DOI: 10.1039/c8ob02874e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin-based ALK inhibitors were identified as a new template for the development of novel fluorescent ALK inhibitors, which can be tracked using microscopy techniques.
Collapse
Affiliation(s)
- Shinmee Mah
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations
- Institute for Basic Science (IBS)
- Daejeon 34141
- Republic of Korea
| | - Daesun Song
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yongje Shin
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations
| | - Muhammad Latif
- Center for Catalytic Hydrocarbon Functionalizations
- Institute for Basic Science (IBS)
- Daejeon 34141
- Republic of Korea
- Centre for Genetics and Inherited Diseases (CGID)
| | - Yongwon Jung
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations
| |
Collapse
|
11
|
Samra GK, Intskirveli I, Govind AP, Liang C, Lazar R, Green WN, Metherate R, Mukherjee J. Development of fluorescence imaging probes for nicotinic acetylcholine α4β2 ∗ receptors. Bioorg Med Chem Lett 2018; 28:371-377. [PMID: 29277457 DOI: 10.1016/j.bmcl.2017.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine α4β2∗ receptors (nAChRs) are implicated in various neurodegenerative diseases and smoking addiction. Imaging of brain high-affinity α4β2∗ nAChRs at the cellular and subcellular levels would greatly enhance our understanding of their functional role. Since better resolution could be achieved with fluorescent probes, using our previously developed positron emission tomography (PET) imaging agent [18F]nifrolidine, we report here design, synthesis and evaluation of two fluorescent probes, nifrodansyl and nifrofam for imaging α4β2∗ nAChRs. The nifrodansyl and nifrofam exhibited nanomolar affinities for the α4β2∗ nAChRs in [3H]cytisine-radiolabeled rat brain slices. Nifrofam labeling was observed in α4β2∗ nAChR-expressing HEK cells and was upregulated by nicotine exposure. Nifrofam co-labeled cell-surface α4β2∗ nAChRs, labeled with antibodies specific for a β2 subunit extracellular epitope indicating that nifrofam labels α4β2∗ nAChR high-affinity binding sites. Mouse brain slices exhibited discrete binding of nifrofam in the auditory cortex showing promise for examining cellular distribution of α4β2∗ nAChRs in brain regions.
Collapse
Affiliation(s)
- Gurleen K Samra
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, United States
| | - Irakli Intskirveli
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, United States
| | - Anitha P Govind
- Department of Neurobiology, University of Chicago, IL 60637, United States
| | - Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, United States
| | - Ronit Lazar
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, United States
| | - William N Green
- Department of Neurobiology, University of Chicago, IL 60637, United States
| | - Raju Metherate
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, United States
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California-Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
12
|
Cortés-Benítez F, Roy J, Maltais R, Poirier D. Impact of androstane A- and D-ring inversion on 17β-hydroxysteroid dehydrogenase type 3 inhibitory activity, androgenic effect and metabolic stability. Bioorg Med Chem 2017; 25:2065-2073. [PMID: 28254377 DOI: 10.1016/j.bmc.2017.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a major player in human endocrinology, being one of the most important enzymes involved in testosterone production. To capitalize on the discovery of RM-532-105, a steroidal 17β-HSD3 inhibitor, we explored the effect of its backbone configuration on inhibitory activity, androgenic profile, and metabolic stability. Two modifications that greatly alter the natural shape of steroids, i.e. inversion of the methyl on carbon 13 (13α-CH3 instead of 13β-CH3) and inversion of the hydrogen on carbon 5 (5β-H instead of 5α-H), were tested after the syntheses in 6 steps of 2 isomeric forms (5α/13α-RM-532-105 (6a) and 5β/13β-RM-532-105 (6b), respectively) of the 17β-HSD3 inhibitor RM-532-105 (5α/13β-configurations). For compound 6b, a cis/trans junction of the A/B rings did not significantly alter the inhibitory activity on 17β-HSD3 (IC50=0.15μM) as well as the liver microsomal stability (16.6% of 6b remaining after 1h incubation) compared to RM-532-105 (IC50=0.11μM and 14.1% remaining). In contrast, a trans/cis junction of C/D rings reduced the inhibitory activity on 17β-HSD3 (IC50=1.09μM) but increased the metabolic stability with 29.4% of compound 6a remaining after incubation. The structural modifications represented by compounds 6a and 6b did not change the non-androgenicity profile of an androsterone derivative such as RM-532-105, but slightly increased its cytotoxic activity.
Collapse
Affiliation(s)
- Francisco Cortés-Benítez
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, Québec, Canada; Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, Québec, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, Québec, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center, Québec, Québec, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|