1
|
Antoniuk O, Maranha A, Salvador JAR, Empadinhas N, Moreira VM. Bi- and tricyclic diterpenoids: landmarks from a decade (2013-2023) in search of leads against infectious diseases. Nat Prod Rep 2024; 41:1858-1894. [PMID: 39371026 DOI: 10.1039/d4np00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Covering: 2013 to 2023In an era where antimicrobial resistance severely threatens our ability to treat infections, the discovery of new drugs that belong to different chemical classes and/or bear original modes of action is urgently needed. In this case, diterpenoids comprise a productive field with a proven track record in providing new anti-infectives to tackle bacterial infections and malaria. This review highlights the potential of both naturally occurring and semi-synthetic bi- and tricyclic diterpenoids to become leads in search of new drugs to treat infections caused by bacteria, fungi, viruses and protozoan parasites. The literature from the last decade (2013-2023) is covered, focusing on naturally occurring and semi-synthetic bicyclic (labdanes and labdane-type) and tricyclic (all classes) diterpenoids, detailing their relevant biological activities in the context of infection, which are explained through structure-activity relationships.
Collapse
Affiliation(s)
- Olha Antoniuk
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Maranha
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Jorge A R Salvador
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Nuno Empadinhas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Vânia M Moreira
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Ahonen T, Ng CP, Farinha B, Almeida B, Victor BL, Reynolds C, Kalso E, Yli-Kauhaluoma J, Greaves J, Moreira VM. Probing the Interactions of Thiazole Abietane Inhibitors with the Human Serine Hydrolases ABHD16A and ABHD12. ACS Med Chem Lett 2023; 14:1404-1410. [PMID: 37849541 PMCID: PMC10577890 DOI: 10.1021/acsmedchemlett.3c00313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
12-Thiazole abietanes are highly selective reversible inhibitors of hABHD16A that could potentially alleviate neuroinflammation. In this study, we used synthetic chemistry, competitive activity-based protein profiling, and computational methodologies to try to establish relevant structural determinants of activity and selectivity of this class of compounds for inhibiting ABHD16A over ABHD12. Five compounds significantly inhibited hABHD16A but also very efficiently discriminated between inhibition of hABHD16A and hABHD12, with compound 35 being the most effective, at 100 μM (55.1 ± 8.7%; p < 0.0001). However, an outstanding switch in the selectivity toward ABHD12 was observed in the presence of a ring A ester, if the C2' position of the thiazole ring possessed a 1-hydroxyethyl group, as in compound 28. Although our data were inconclusive as to whether the observed enzyme inhibition is allosteric or not, we anticipate that the structure-activity relationships presented herein will inspire future drug discovery efforts in this field.
Collapse
Affiliation(s)
- Tiina
J. Ahonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Choa P. Ng
- Research
Centre for Health and Life Sciences, Coventry
University, CV1 5RW Coventry, U.K.
| | - Beatriz Farinha
- BioISI—Biosystems
& Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Bárbara Almeida
- BioISI—Biosystems
& Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Bruno L. Victor
- BioISI—Biosystems
& Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Christopher Reynolds
- Research
Centre for Health and Life Sciences, Coventry
University, CV1 5RW Coventry, U.K.
- School
of Life Sciences, University of Essex, CO4 3SQ Colchester, U.K.
| | - Eija Kalso
- Department
of Pharmacology, Faculty of Medicine, University
of Helsinki, 00014 Helsinki, Finland
- Department
of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Jennifer Greaves
- Research
Centre for Health and Life Sciences, Coventry
University, CV1 5RW Coventry, U.K.
| | - Vânia M. Moreira
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Centre
for Neuroscience and Cell Biology, and Centre for Innovative Biomedicine
and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory
of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
4
|
Yang Y, Pannecouque C, Clercq ED, Zhuang C, Chen FE. Privileged scaffold inspired design of novel oxime-biphenyl-DAPYs in treatment of HIV-1. Bioorg Chem 2020; 99:103825. [DOI: 10.1016/j.bioorg.2020.103825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 11/24/2022]
|
5
|
Denisov MS, Glushkov VA. N-Heterocyclic Carbenes: XII. Sterically Congested Diterpene Imidazolium and Benzimidazolium Salts. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Synthesis and structure-activity relationships of novel abietane diterpenoids with activity against Staphylococcus aureus. Future Med Chem 2019; 11:3109-3124. [PMID: 31838897 DOI: 10.4155/fmc-2019-0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To find alternative compounds against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA), novel derivatives from dehydroabietic acid were synthesized. Methods & results: Compound 12 was the most effective against 15 MRSA and 11 MSSA with minimum inhibitory concentration values ranging from 3.9 to 15.6 μg/ml. Although less active than 12, compound 11, followed by 25 and 13, also exhibited anti-staphylococcal activity. Additional studies showed that compound 12 is devoid of toxic effect on non-target cells. A structure-activity relationship study revealed that an oxime at C-13 together with a hydroxyl at C-12 could play a key role in the activity. Conclusion: These structures, in particular compound 12, could arise as templates for the development of agents against MRSA and MSSA.
Collapse
|
7
|
Li FY, Huang L, Li Q, Wang X, Ma XL, Jiang CN, Zhou XQ, Duan WG, Lei FH. Synthesis and Antiproliferative Evaluation of Novel Hybrids of Dehydroabietic Acid Bearing 1,2,3-Triazole Moiety. Molecules 2019; 24:molecules24224191. [PMID: 31752282 PMCID: PMC6891475 DOI: 10.3390/molecules24224191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 01/19/2023] Open
Abstract
To discover novel potent cytotoxic diterpenoids, a series of hybrids of dehydroabietic acid containing 1,2,3-triazole moiety were designed and synthesized. The target compounds were characterized by means of FT-IR, 1H NMR, 13C NMR, ESI-MS and elemental analysis techniques. The in vitro cytotoxicity of these compounds was evaluated by standard MTT (methyl thiazolytetrazolium) assay against CNE-2 (nasopharynx), HepG2 (liver), HeLa (epithelial cervical), BEL-7402 (liver) human carcinoma cell lines and human normal liver cell (HL-7702). The screening results revealed that most of the hybrids showed significantly improved cytotoxicity over parent compound DHAA. Among them, [1-(3-fluorobenzyl)-1H-1,2,3-triazole-4-yl]dehydroabietic acid methyl ester (3c), and [1-(2-nitrobenzyl)-1H-1,2,3-triazole-4-yl]dehydroabietic acid methyl ester (3k) displayed better antiproliferative activity with IC50 (50% inhibitory concentration) values of 5.90 ± 0.41 and 6.25 ± 0.37 µM toward HepG2 cells compared to cisplatin, while they exhibited lower cytotoxicity against HL-7702. Therefore, the 1,2,3-triazole-hybrids could be a promising strategy for the synthesis of antitumor diterpenoids and it also proved the essential role of 1,2,3-triazole moiety of DHAA in the biological activity.
Collapse
Affiliation(s)
- Fang-Yao Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (F.-Y.L.); (X.W.)
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Lin Huang
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Qian Li
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Xiu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (F.-Y.L.); (X.W.)
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Cai-Na Jiang
- College of Pharmacy, Guilin Medical University, Guilin 541100, Guangxi, China; (L.H.); (Q.L.); (X.-L.M.); (C.-N.J.)
| | - Xiao-Qun Zhou
- College of Humanities and Management, Guilin Medical University, Guilin 541100, Guangxi, China;
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (F.-Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-771-323-9910; Fax: +86-771-323-3718
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nangning, Guangxi 530006, China;
| |
Collapse
|
8
|
Zhang WM, Yao Y, Yang T, Wang XY, Zhu ZY, Xu WT, Lin HX, Gao ZB, Zhou H, Yang CG, Cui YM. The synthesis and antistaphylococcal activity of N-sulfonaminoethyloxime derivatives of dehydroabietic acid. Bioorg Med Chem Lett 2018; 28:1943-1948. [PMID: 29650291 DOI: 10.1016/j.bmcl.2018.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
A series of N-sulfonaminoethyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having chloro, bromo, trifluoromethyl phenyl moiety exhibited potent in vitro antistaphylococcal activity. The meta-CF3 phenyl derivative T23 showed the highest activity with MIC of 0.39-0.78 μg/mL against S. aureus Newman, while several analogues showed similar potent antibacterial activity with MIC values between 0.78 and 1.56 μg/mL against five multidrug-resistant S. aureus. The stability of T35 in plasma of SD rat and the cellular cytotoxicity were also evaluated.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Yao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Teng Yang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue-Ying Wang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhen-Yun Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen-Tao Xu
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
9
|
Hou W, Zhang G, Luo Z, Li D, Ruan H, Ruan BH, Su L, Xu H. Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorg Med Chem Lett 2017; 27:5382-5386. [PMID: 29153424 DOI: 10.1016/j.bmcl.2017.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023]
Abstract
A diverse natural product-like (NPL) synthetic abietane diterpenoid library containing 86 compounds were obtained and the SARs were studied based on their antibacterial potential. Further in vitro cytotoxic and in silico drug-like properties evaluation showed that the potent antibacterial compound 84 had good drug-like properties and displayed low cytotoxicity toward noncancerous mammalian cells, indicating the study of AA and DHAA might be a good starting point for the search of novel antimicrobial molecules. Future work should be focused on the optimization of their potency and selectivity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guanjun Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhi Luo
- Shanghai Evergene Biotech Co., Ltd., Shanghai 201499, PR China
| | - Di Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haoqiang Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lin Su
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China.
| |
Collapse
|
10
|
Zhang WM, Yang T, Pan XY, Liu XL, Lin HX, Gao ZB, Yang CG, Cui YM. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: modifications at C12 and C7. Eur J Med Chem 2016; 127:917-927. [PMID: 27837995 DOI: 10.1016/j.ejmech.2016.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/14/2023]
Abstract
A series of 7-N-acylaminoethyl/propyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having trifluoromethyl phenyl/benzyl, halogen-substituted thiophenyl, benzothiophenyl or pyrrolyl moiety exhibited potent in vitro antibacterial activity. Among which, compounds 4m, 4x and 7j showed high antibacterial activity with minimum inhibitory concentration (MIC) values of 1.25-3.13 μg/mL against five multidrug-resistant S. aureus.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Teng Yang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue-Ying Pan
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Lan Liu
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|