1
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Demircan Ozelcaglayan E, Honek JF, Parker WJ. Molecular level investigation of interactions between pharmaceuticals and β-cyclodextrin (β-CD) functionalized adsorption sites for removal of pharmaceutical contaminants from water. CHEMOSPHERE 2024; 347:140639. [PMID: 37939929 DOI: 10.1016/j.chemosphere.2023.140639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
This study describes a novel application of the use of molecular modeling tools for investigating the adsorption of organic micropollutants (OMPs) from water by nanocomposites. The partitioning of pharmaceuticals onto β-Cyclodextrin (β-CD) functionalized adsorbents was investigated at the molecular level to explore the atomistic interactions of pharmaceutical contaminants in water systems with β-CD and to provide insight into possible approaches for removal of pharmaceuticals from water. Molecular electrostatic surface potential mapping of β-CD derivatives was employed to examine the impact of substitution degree of β-CD and type of grafting agent on host-guest complexation. The stability of the complexes of selected pharmaceuticals and β-CD derivatives were assessed via molecular dynamics simulations to evaluate competitive adsorption between organic micropollutants (OMPs) and between OMPs and fulvic acid, a representative natural organic material (NOM) component found in water systems. Molecular electrostatic surface potential maps showed that grafting agents with aromatic and amine functional groups were found to provide attractive interactions for negatively charged OMPs. In addition, optimization of substitution degree of β-CD is necessary to enhance adsorption of target OMPs. Furthermore, it was found that aromatic ring bearing grafting agents can provide additional electrostatic attractions by π-π interactions with the aromatic ring of the OMPs. The impact of common water quality characteristics on adsorption was assessed and it was revealed that the effect of pH and calcium on adsorption depends on the ionizable functional groups present on the grafting agent. Molecular dynamics simulations showed that adsorption of target OMPs does not solely depend on hydrophobicity but is affected by electrostatic interactions. The simulations revealed that fulvic acid which is commonly present in environmental waters can be a competitor with ibuprofen for the β-CD cavity. Ultimately, this study showed that molecular level simulation can be effectively employed to investigate adsorption of OMPs by β-CD functionalized adsorbents and could be employed to enhance their design and subsequent environmental applications.
Collapse
Affiliation(s)
- Ezgi Demircan Ozelcaglayan
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada.
| | - John F Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada
| |
Collapse
|
3
|
Ojeda-Porras AC, Roy V, Bourzikat O, Favetta P, Agrofoglio LA. Cobalt-assisted route to rare carbocyclic C-ribonucleosides. RSC Adv 2023; 13:30777-30786. [PMID: 37869399 PMCID: PMC10587889 DOI: 10.1039/d3ra04937j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
(Re)emerging RNA viruses have been major threats to public health in the past years, and from the few drugs available, nucleoside analogues are still at the cornerstone of the antiviral therapy. Among them, the synthesis of carbocyclic C-nucleosides is suffering from long syntheses and poor yields. Herein we report a concise stereoselective synthesis of rare carbocyclic C-nucleosides (11a-l) bearing non-canonical nucleobases through a cobalt-assisted-route as key step starting from the optically pure (-)-cyclopentenone 1. This approach paves the route for novel carbocyclic C-nucleoside discovery.
Collapse
Affiliation(s)
- A C Ojeda-Porras
- Université d'Orléans et CNRS, ICOA, UMR 7311 F-45067 Orléans France
| | - V Roy
- Université d'Orléans et CNRS, ICOA, UMR 7311 F-45067 Orléans France
| | - O Bourzikat
- Université d'Orléans et CNRS, ICOA, UMR 7311 F-45067 Orléans France
| | - P Favetta
- Université d'Orléans et CNRS, ICOA, UMR 7311 F-45067 Orléans France
| | - L A Agrofoglio
- Université d'Orléans et CNRS, ICOA, UMR 7311 F-45067 Orléans France
| |
Collapse
|
4
|
Elías-Rodríguez P, Matador E, Benítez M, Tejero T, Díez E, Fernández R, Merino P, Monge D, Lassaletta JM. Silver-Free Gold-Catalyzed Heterocyclizations through Intermolecular H-Bonding Activation. J Org Chem 2023; 88:2487-2492. [PMID: 36704838 PMCID: PMC9942198 DOI: 10.1021/acs.joc.2c02932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Modulable monosulfonyl squaramides have been shown to exert activation of gold(I) chloride complexes through H-bonding in an intermolecular way. Combinations of (PPh3)AuCl or IPrAuCl complexes and an optimal sulfonyl squaramide cocatalyst bearing two 3,5-bis(trifluoromethyl)phenyl groups efficiently catalyzed diverse heterocyclizations and a cyclopropanation reaction, avoiding in all cases undesired side reactions. Computational studies indicate that the Au-Cl bond breaks by transligation to the triple bond in a ternary complex formed by the actual AuCl···HBD catalyst and the substrate.
Collapse
Affiliation(s)
- Pilar Elías-Rodríguez
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Esteban Matador
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Manuel Benítez
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Tomás Tejero
- Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Elena Díez
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain,E-mail:
| | - Pedro Merino
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain,E-mail:
| | - David Monge
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain,E-mail:
| | - José M. Lassaletta
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain,E-mail:
| |
Collapse
|
5
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
6
|
Kwak J, Kim MJ, Kim S, Park GB, Jo J, Jeong M, Kang S, Moon S, Bang S, An H, Hwang S, Kim MS, Yoo JW, Moon HR, Chang W, Chung KW, Jeong JY, Yun H. A bioisosteric approach to the discovery of novel N-aryl-N′-[4-(aryloxy)cyclohexyl]squaramide-based activators of eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation. Eur J Med Chem 2022; 239:114501. [DOI: 10.1016/j.ejmech.2022.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
|
7
|
Ojeda-Porras AC, Roy V, Agrofoglio LA. Chemical Approaches to Carbocyclic Nucleosides. CHEM REC 2022; 22:e202100307. [PMID: 35119191 DOI: 10.1002/tcr.202100307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Indexed: 02/02/2023]
Abstract
Nucleoside analogues are at the forefront of antiviral therapy for last decades. To circumvent some of their limitations, based on their metabolism, and in order to improve their anti-viral potency and selectivity, several families of nucleoside analogues have been described through structural modifications at the sugar and heterocycles. The replacement of the oxygen of the nucleoside by a methylene has led to the family of carbocyclic (or cyclopentane) nucleoside analogues. Various potent anti-HIV and anti-HBV drugs belong to this family. Main syntheses of carbocyclic analogues of nucleosides used Diels-Alder reactions (in racemic or asymmetric series), but also started from carbohydrates (ribose, glucose), as a source of optically active compounds, which then had to be transformed into carbacycles under various conditions. The growing interest in carbocyclic nucleosides has led several groups, including ours, to develop new analogues and to explore novel routes. This article will review some of the recent chemistry developed on selected five-membered ring carbocyclic nucleosides.
Collapse
Affiliation(s)
- Andrea C Ojeda-Porras
- ICOA, Univ. Orléans, CNRS UMR 7311, Université d'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| | - Vincent Roy
- ICOA, Univ. Orléans, CNRS UMR 7311, Université d'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| | - Luigi A Agrofoglio
- ICOA, Univ. Orléans, CNRS UMR 7311, Université d'Orléans, Rue de Chartres, 45067, Orléans Cedex 2, France
| |
Collapse
|
8
|
García‐Urricelqui A, Cózar A, Campano TE, Mielgo A, Palomo C. syn
‐Selective Michael Reaction of α‐Branched Aryl Acetaldehydes with Nitroolefins Promoted by Squaric Amino Acid Derived Bifunctional Brønsted Bases. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ane García‐Urricelqui
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Abel Cózar
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE Basque Foundation for Science 48009 Blbao Spain
| | - Teresa E. Campano
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| |
Collapse
|
9
|
Bennett RM, Sun W, Wilson DC, Light ME, Harrowven DC. A new mode of cyclobutenedione ring opening for the synthesis of 2-oxobut-3-enamides and tetrasubstituted furans. Chem Commun (Camb) 2021; 57:5694-5697. [PMID: 33982046 DOI: 10.1039/d1cc02097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dichotomy between the additions of organolithiums and lithium amides to cyclobutenediones is described wherein the former give carbonyl addition products while the latter induce ring opening by enone cleavage via O- to C-lithium transfer. This distinct mode of ring scission gives access to 2-oxobut-3-enamides and tetrasubstituted furans.
Collapse
Affiliation(s)
- Ryan M Bennett
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Wei Sun
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Dharyl C Wilson
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Mark E Light
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - David C Harrowven
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
10
|
Brickute D, Beckley A, Allott L, Braga M, Barnes C, Thorley KJ, Aboagye EO. Synthesis and evaluation of 3'-[ 18F]fluorothymidine-5'-squaryl as a bioisostere of 3'-[ 18F]fluorothymidine-5'-monophosphate. RSC Adv 2021; 11:12423-12433. [PMID: 35423725 PMCID: PMC8696986 DOI: 10.1039/d1ra00205h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/14/2021] [Indexed: 11/21/2022] Open
Abstract
The squaryl moiety has emerged as an important phosphate bioisostere with reportedly greater cell permeability. It has been used in the synthesis of several therapeutic drug molecules including nucleoside and nucleotide analogues but is yet to be evaluated in the context of positron emission tomography (PET) imaging. We have designed, synthesised and evaluated 3'-[18F]fluorothymidine-5'-squaryl ([18F]SqFLT) as a bioisostere to 3'-[18F]fluorothymidine-5'-monophosphate ([18F]FLTMP) for imaging thymidylate kinase (TMPK) activity. The overall radiochemical yield (RCY) was 6.7 ± 2.5% and radiochemical purity (RCP) was >90%. Biological evaluation in vitro showed low tracer uptake (<0.3% ID mg-1) but significantly discriminated between wildtype HCT116 and CRISPR/Cas9 generated TMPK knockdown HCT116shTMPK-. Evaluation of [18F]SqFLT in HCT116 and HCT116shTMPK- xenograft mouse models showed statistically significant differences in tumour uptake, but lacked an effective tissue retention mechanism, making the radiotracer in its current form unsuitable for PET imaging of proliferation.
Collapse
Affiliation(s)
- D Brickute
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital W12 0NN London UK
| | - A Beckley
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital W12 0NN London UK
| | - L Allott
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital W12 0NN London UK
| | - M Braga
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital W12 0NN London UK
| | - C Barnes
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital W12 0NN London UK
| | - K J Thorley
- University of Kentucky, Department of Chemistry Lexington KY 40506 USA
| | - E O Aboagye
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital W12 0NN London UK
| |
Collapse
|
11
|
Chasák J, Šlachtová V, Urban M, Brulíková L. Squaric acid analogues in medicinal chemistry. Eur J Med Chem 2020; 209:112872. [PMID: 33035923 DOI: 10.1016/j.ejmech.2020.112872] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
In this review, we summarize the published data on squaric acid analogues with a special focus on their use in medicinal chemistry and as potential drugs. Squaric acid is an interesting small molecule with an almost perfectly square shape, and its analogues have a variety of biological activities that are enabled by the presence of significant H-bond donors and acceptors. Unfortunately, most of these compounds also exhibit reactive functionalities, and this deters the majority of medicinal chemists and pharmacologists from trying to use them in drug development. However, this group of compounds is experiencing a renaissance, and large numbers of them are being tested for antiprotozoal, antibacterial, antifungal, and antiviral activities. The most useful of these compounds exhibited IC50 values in the nanomolar range, which makes them promising drug candidates. In addition to these activities, their interactions with living systems were intensively explored, revealing that squaric acid analogues inhibit various enzymes and often serve as receptor antagonists and that the squaric acid moiety may be used as a non-classical isosteric replacement for other functional groups such as carboxylate. In summary, this review is focused on squaric acid and its analogues and their use in medicinal chemistry and should serve as a guide for other researchers in the field to demonstrate the potential of these compounds based on previous research.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Veronika Šlachtová
- Department of Organic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Milan Urban
- Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Agnew-Francis KA, Williams CM. Squaramides as Bioisosteres in Contemporary Drug Design. Chem Rev 2020; 120:11616-11650. [DOI: 10.1021/acs.chemrev.0c00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kylie A. Agnew-Francis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Kordnezhadian R, Shekouhy M, Karimian S, Khalafi-Nezhad A. DBU-functionalized MCM-41-coated nanosized hematite (DBU-F-MCM-41-CNSH): A new magnetically separable basic nanocatalyst for the synthesis of some nucleoside-containing heterocycles. J Catal 2019. [DOI: 10.1016/j.jcat.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
|
15
|
Hu JL, Sha F, Li Q, Wu XY. Highly enantioselective Michael/cyclization tandem reaction between dimedone and isatylidene malononitriles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Cheuquepán W, Martínez-Olivares J, Rodes A, Orts JM. Squaric acid adsorption and oxidation at gold and platinum electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|