1
|
Chudasama DD, Rajput CV, Patel MS, Parekh JN, Patel HC, Chikhaliya NP, Puerta A, Padrón JM, Ram KR. Microwave-induced one-pot synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole hybrids as antiproliferative agents and density functional theory study. Arch Pharm (Weinheim) 2024; 357:e2300632. [PMID: 38150663 DOI: 10.1002/ardp.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 μM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.
Collapse
Affiliation(s)
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
2
|
Modh DH, Kulkarni VM. Anticancer Drug Discovery By Structure-Based Repositioning Approach. Mini Rev Med Chem 2024; 24:60-91. [PMID: 37165589 DOI: 10.2174/1389557523666230509123036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Despite the tremendous progress that has occurred in recent years in cell biology and oncology, in chemical, physical and computer sciences, the disease cancer has continued as the major cause of death globally. Research organizations, academic institutions and pharmaceutical companies invest huge amounts of money in the discovery and development of new anticancer drugs. Though much effort is continuing and whatever available approaches are being attempted, the success of bringing one effective drug into the market has been uncertain. To overcome problems associated with drug discovery, several approaches are being attempted. One such approach has been the use of known, approved and marketed drugs to screen these for new indications, which have gained considerable interest. This approach is known in different terms as "drug repositioning or drug repurposing." Drug repositioning refers to the structure modification of the active molecule by synthesis, in vitro/ in vivo screening and in silico computational applications where macromolecular structure-based drug design (SBDD) is employed. In this perspective, we aimed to focus on the application of repositioning or repurposing of essential drug moieties present in drugs that are already used for the treatment of some diseases such as diabetes, human immunodeficiency virus (HIV) infection and inflammation as anticancer agents. This review thus covers the available literature where molecular modeling of drugs/enzyme inhibitors through SBDD is reported for antidiabetics, anti-HIV and inflammatory diseases, which are structurally modified and screened for anticancer activity using respective cell lines.
Collapse
Affiliation(s)
- Dharti H Modh
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Erandwane, Pune, 411038, Maharashtra, India
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Erandwane, Pune, 411038, Maharashtra, India
| |
Collapse
|
3
|
Kumar A, Alam MS, Hamid H, Chugh V, Tikla T, Kaul R, Dhulap A, Sharma SK. Design and synthesis of anti–inflammatory 1,2,3–triazolylpyrrolobenzodiazepinone derivatives and impact of molecular structure on COX–2 selective targeting. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Lingling C, Hao W, Fuqiang Y, Chao G, Honglin D, Xiaojie S, Yang Z, Jiaxin Z, Lihong S, Hongmin L, Qiurong Z. Design, Synthesis and Antitumor Activity Evaluation of Trifluoromethyl-Containing Polysubstituted Pyrimidine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Mohsin NUA, Aslam S, Ahmad M, Irfan M, Al-Hussain SA, Zaki MEA. Cyclooxygenase-2 (COX-2) as a Target of Anticancer Agents: A Review of Novel Synthesized Scaffolds Having Anticancer and COX-2 Inhibitory Potentialities. Pharmaceuticals (Basel) 2022; 15:ph15121471. [PMID: 36558921 PMCID: PMC9783503 DOI: 10.3390/ph15121471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a serious threat to human beings and is the second-largest cause of death all over the globe. Chemotherapy is one of the most common treatments for cancer; however, drug resistance and severe adverse effects are major problems associated with anticancer therapy. New compounds with multi-target inhibitory properties are targeted to surmount these challenges. Cyclooxygenase-2 (COX-2) is overexpressed in cancers of the pancreas, breast, colorectal, stomach, and lung carcinoma. Therefore, COX-2 is considered a significant target for the synthesis of new anticancer agents. This review discusses the biological activity of recently prepared dual anticancer and COX-2 inhibitory agents. The most important intermolecular interactions with the COX-2 enzyme have also been presented. Analysis of these agents in the active area of the COX-2 enzyme could guide the introduction of new lead compounds with extreme selectivity and minor side effects.
Collapse
Affiliation(s)
- Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.A.); (M.E.A.Z.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (M.A.); (M.E.A.Z.)
| |
Collapse
|
6
|
Mortazavi M, Divar M, Damghani T, Moosavi F, Saso L, Pirhadi S, Khoshneviszadeh M, Edraki N, Firuzi O. Study of the anticancer effect of new quinazolinone hydrazine derivatives as receptor tyrosine kinase inhibitors. Front Chem 2022; 10:969559. [PMID: 36465863 PMCID: PMC9713320 DOI: 10.3389/fchem.2022.969559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023] Open
Abstract
The advent of novel receptor tyrosine kinase inhibitors has provided an important therapeutic tool for cancer patients. In this study, a series of quinazolinone hydrazide triazole derivatives were designed and synthesized as novel MET (c-MET) receptor tyrosine kinase inhibitors. The antiproliferative effect of the synthesized compounds was examined against EBC-1, A549, HT-29 and U-87MG cells by MTT assay. MET kinase inhibitory effect was tested by a Homogenous Time Resolved Fluorescence (HTRF) assay. The antiproliferative effect of compounds in a three-dimensional spheroid culture was studied by acid phosphatase (APH) assay, while apoptosis induction was examined by Hoechst 33258 staining. We found that compound CM9 bearing p-bromo benzyl pendant inhibited MET kinase activity at the concentrations of 10-50 μM (% Inhibition = 37.1-66.3%). Compound CM9 showed antiproliferative effect against cancer cells, in particular lung cancer cells with MET amplification (EBC-1) with an IC50 value of 8.6 μM. Moreover, this derivative inhibited cell growth in spheroid cultures in a dose-dependent manner and induced apoptosis in cancer cells. Assessment of inhibitory effect of CM9 against a panel of 18 different protein kinases demonstrated that this compound also inhibits ALK, AXL, FGFR1, FLT1 (VEGFR1) and FLT4 (VEGFR3) more than 50% at 25 μM. Finally, molecular docking and dynamics simulation corroborated the experimental findings and showed critical structural features for the interactions between CM9 and target kinases. The findings of this study present quinazolinone hydrazide triazole derivatives as kinase inhibitors with considerable anticancer effects.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Synthesis, Spectroscopic Analysis, and In Vitro Anticancer Evaluation of 2-(Phenylsulfonyl)-2H-1,2,3-triazole. MOLBANK 2022. [DOI: 10.3390/m1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The 1,2,3-Triazole derivatives containing the sulfonyl group have proved their biological importance in medicinal chemistry and drug design. In this sense, we describe the regioselective synthesis of 2-(phenylsulfonyl)-2H-1,2,3-triazole 3 in good yield through a classical sulfonamidation reaction of 1H-1,2,3-triazole 1 with benzenesulfonyl chloride 2 in dichloromethane using a slight excess of triethylamine at 20 °C for 3 h. This procedure is distinguished by its short reaction time, high yield, excellent regioselectivity, clean reaction profile, and operational simplicity. The sulfonamide 3 was characterized by high-resolution mass spectrometry, FT–IR, UV–Vis, 1D and 2D NMR spectroscopy, and elemental analysis. The sulfonamide 3 exhibited moderate activity against UO-31 renal, SNB-75 central nervous system, HCT-116 colon, and BT-549 breast cancer cell lines, with growth inhibition percentages (GI%) ranging from 10.83% to 17.64%.
Collapse
|
8
|
Kodasi B, Joshi SD, Kamble RR, Keri RS, Bayannavar PK, Nesaragi AR, Dixit S, Vootla SK, Metre TV. Cu microcrystals garnished with copper nanoparticles catalyzed one‐pot facile synthesis of novel 1,2,3‐triazoles via click chemistry as antifungal agents. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Barnabas Kodasi
- Department of Studies in Chemistry Karnatak University Dharwad India
| | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry S.E.T.'s College of Pharmacy Dharwad India
| | | | - Rangappa S. Keri
- Centre for Nano and Material Science Jain University Bangalore India
| | | | | | - Shruti Dixit
- Department of Biotechnology Karnatak University Dharwad India
| | | | - Tukaram V. Metre
- Department of Studies in Chemistry Karnatak University Dharwad India
| |
Collapse
|
9
|
Yang B, Kong Y, Hu Y, Zhuang Y, Wang N, Zhang J, Cai J, Dong C. Synthesis and Primary Biological Evaluation of Triazole‐Modified Picroside II Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Yang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
| | - Yuanfang Kong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
| | - Yulong Hu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Yan Zhuang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Ning Wang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Jingyu Zhang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
| | - Juntao Cai
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Chunhong Dong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| |
Collapse
|
10
|
Mareddy J, Hossain KA, Yadav NS, Banothu V, Anireddy JS, Pal S. Novel molecules containing structural features of NSAIDs and 1,2,3-triazole ring: Design, synthesis and evaluation as potential cytotoxic agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Trindade JDS, Freire-de-Lima CG, Côrte-Real S, Decote-Ricardo D, Freire de Lima ME. Drug repurposing for Chagas disease: In vitro assessment of nimesulide against Trypanosoma cruzi and insights on its mechanisms of action. PLoS One 2021; 16:e0258292. [PMID: 34679091 PMCID: PMC8535186 DOI: 10.1371/journal.pone.0258292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease is a neglected illness caused by Trypanosoma cruzi and its treatment is done only with two drugs, nifurtimox and benznidazole. However, both drugs are ineffective in the chronic phase, in addition to causing serious side effects. This context of therapeutic limitation justifies the continuous research for alternative drugs. Here, we study the in vitro trypanocidal effects of the non-steroidal anti-inflammatory drug nimesulide, a molecule that has in its chemical structure a toxicophoric nitroaromatic group (NO2). The set of results obtained in this work highlights the potential for repurposing nimesulide in the treatment of this disease that affects millions of people around the world.
Collapse
Affiliation(s)
- Joana D’Arc S. Trindade
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Suzana Côrte-Real
- Instituto Oswaldo Cruz/Fiocruz, Laboratório de Biologia Estrutural, Rio de Janeiro, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Marco Edilson Freire de Lima
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Bimoussa A, Oubella A, Laamari Y, Fawzi M, Hachim ME, Ait Itto MY, Morjani H, Ketatni EM, Mentre O, Auhmani A. Hybrid of the 1,2,3‐triazole nucleus and sesquiterpene skeleton as a potential antitumor agent: Hemisynthesis, molecular structure, Hirshfeld surface analysis, density functional theory, and in vitro cytotoxic and apoptotic effects. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abdoullah Bimoussa
- Laboratory of Organic Synthesis and Physico‐Molecular Chemistry, Department of Chemistry Faculty of Sciences Semlalia Marrakesh Morocco
| | - Ali Oubella
- Laboratory of Organic Synthesis and Physico‐Molecular Chemistry, Department of Chemistry Faculty of Sciences Semlalia Marrakesh Morocco
| | - Yassine Laamari
- Laboratory of Organic Synthesis and Physico‐Molecular Chemistry, Department of Chemistry Faculty of Sciences Semlalia Marrakesh Morocco
| | - Mourad Fawzi
- Laboratory of Organic Synthesis and Physico‐Molecular Chemistry, Department of Chemistry Faculty of Sciences Semlalia Marrakesh Morocco
| | - Mouhi Eddine Hachim
- Laboratoire de Chimie Analytique et Moléculaire, Faculté Polydisciplinaire Université Cadi Ayyad Safi Morocco
| | - My Youssef Ait Itto
- Laboratory of Organic Synthesis and Physico‐Molecular Chemistry, Department of Chemistry Faculty of Sciences Semlalia Marrakesh Morocco
| | - Hamid Morjani
- BioSpectroscopieTranslationnelle, BioSpecT‐EA7506, UFR de Pharmacie Université de Reims Champagne‐Ardenne Reims Cedex France
| | - El Mostafa Ketatni
- Laboratory of Organic and Analytical Chemistry, Sultan Moulay Slimane University Faculty of Science and Technology Beni‐Mellal Morocco
| | - Olivier Mentre
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 ‐ UCCS ‐Catalysis and Solid Chemistry Unit Lille France
| | - Aziz Auhmani
- Laboratory of Organic Synthesis and Physico‐Molecular Chemistry, Department of Chemistry Faculty of Sciences Semlalia Marrakesh Morocco
| |
Collapse
|
13
|
Synthesis, Docking, and Biological activities of novel Metacetamol embedded [1,2,3]-triazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Liang T, Sun X, Li W, Hou G, Gao F. 1,2,3-Triazole-Containing Compounds as Anti-Lung Cancer Agents: Current Developments, Mechanisms of Action, and Structure-Activity Relationship. Front Pharmacol 2021; 12:661173. [PMID: 34177578 PMCID: PMC8226129 DOI: 10.3389/fphar.2021.661173] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most common malignancy and leads to around one-quarter of all cancer deaths. Great advances have been achieved in the treatment of lung cancer with novel anticancer agents and improved technology. However, morbidity and mortality rates remain extremely high, calling for an urgent need to develop novel anti-lung cancer agents. 1,2,3-Triazole could be readily interact with diverse enzymes and receptors in organisms through weak interaction. 1,2,3-Triazole can not only be acted as a linker to tether different pharmacophores but also serve as a pharmacophore. This review aims to summarize the recent advances in 1,2,3-triazole-containing compounds with anti-lung cancer potential, and their structure-activity relationship (SAR) together with mechanisms of action is also discussed to pave the way for the further rational development of novel anti-lung cancer candidates.
Collapse
Affiliation(s)
- Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangyang Sun
- Department of Interventional Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Aissa I, Abdelkafi-Koubaa Z, Chouaïb K, Jalouli M, Assel A, Romdhane A, Harrath AH, Marrakchi N, Ben Jannet H. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates. Bioorg Chem 2021; 114:105071. [PMID: 34130108 DOI: 10.1016/j.bioorg.2021.105071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
Two series of 3,5-disubstituted isoxazoles (6a-e) and 1,4-disubstituted triazoles (8a-e) derivatives have been synthesized from tyrosol (1), a natural phenolic compound, detected in several natural sources such as olive oil, and well-known by its wide spectrum of biological activities. Copper-catalyzed microwave-assisted 1,3-dipolar cycloaddition reactions between tyrosol-alkyne derivative 2 and two series of aryl nitrile oxides (5a-e) and azides (7a-e) regiospecifically afforded 3,5-disubstituted isoxazoles (6a-e) and 1,4-triazole derivatives (8a-e), respectively in quantitative yields. Synthesized compounds were purified and characterized by spectroscopic means including 1D and 2D NMR techniques and HRMS analysis. The newly prepared hybrid molecules have been evaluated for their anticancer and hemolytic activities. Results showed that most derivatives displayed significant antiproliferative activity against human glioblastoma cancer cells (U87) in a dose-dependent manner. Compounds 6d (IC50 = 15.2 ± 1.0 μg/mL) and 8e (IC50 = 21.0 ± 0.9 μg/mL) exhibited more potent anticancer activity. Moreover, most derivatives displayed low hemolytic activity, even at higher concentrations which suggested that these classes of compounds are suitable candidates for further in vivo investigations. The obtained results allow us to consider the newly synthesized isoxazole- and triazole-linked tyrosol derivatives as promising scaffolds for the development of effective anticancer agents.
Collapse
Affiliation(s)
- Imen Aissa
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, 1002 Tunis, Tunisia; University of Tunis El Manar, 1068 Tunis, Tunisia
| | - Karim Chouaïb
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Maroua Jalouli
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Amine Assel
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Anis Romdhane
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Naziha Marrakchi
- Pasteur Institute of Tunis, LR20IPT01, Laboratory of Biomolecules, Venoms and Theranostic Applications, 1002 Tunis, Tunisia; University of Tunis El Manar, 1068 Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis, 1068 Tunis, Tunisia
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Science of Monastir, Laboratory of Heterocyclic, Chemistry, Natural Products and Reactivity, TeamMedicinal Chemistry and Natural, Products (LR11ES39), Department of Chemistry, Avenue of Environment, 5019 Monastir, Tunisia.
| |
Collapse
|
16
|
Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci Rep 2021; 11:3644. [PMID: 33574356 PMCID: PMC7878917 DOI: 10.1038/s41598-021-83069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Aberrant activation of c-Met signalling plays a prominent role in cancer development and progression. A series of 12 imidazo [1,2-α] pyridine derivatives bearing 1,2,3-triazole moiety were designed, synthesized and evaluated for c-Met inhibitory potential and anticancer effect. The inhibitory activity of all synthesized compounds against c-Met kinase was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay at the concentration range of 5-25 µM. Derivatives 6d, 6e and 6f bearing methyl, tertiary butyl and dichloro-phenyl moieties on the triazole ring, respectively, were the compounds with the highest potential. They significantly inhibited c-Met by 55.3, 53.0 and 51.3%, respectively, at the concentration of 25 µM. Synthetic compounds showed antiproliferative effects against lung (EBC-1) and pancreatic cancer cells (AsPc-1, Suit-2 and Mia-PaCa-2) expressing different levels of c-Met, with IC50 values as low as 3.0 µM measured by sulforhodamine B assay. Active derivatives significantly blocked c-Met phosphorylation, inhibited cell growth in three-dimensional spheroid cultures and also induced apoptosis as revealed by Annexin V/propidium iodide flow cytometric assay in AsPc-1 cells. They also inhibited PDGFRA and FLT3 at 25 µM among a panel of 16 kinases. Molecular docking and dynamics simulation studies corroborated the experimental findings and revealed possible binding modes of the select derivatives with target receptor tyrosine kinases. The results of this study show that some imidazopyridine derivatives bearing 1,2,3-triazole moiety could be promising molecularly targeted anticancer agents against lung and pancreatic cancers.
Collapse
|
17
|
Deshmukh TR, Khedkar VM, Jadhav RG, Sarkate AP, Sangshetti JN, Tiwari SV, Shingate BB. A copper-catalyzed synthesis of aryloxy-tethered symmetrical 1,2,3-triazoles as potential antifungal agents targeting 14 α-demethylase. NEW J CHEM 2021. [DOI: 10.1039/d1nj01759d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The search for potent therapeutic agents has prompted the design and synthesis of a library of twenty-six aryloxy-tethered and amide-linked symmetrical 1,2,3-triazoles (8a–z) using a copper(i)-catalyzed click chemistry approach.
Collapse
Affiliation(s)
- Tejshri R. Deshmukh
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- Vishwakarma University
- Pune-411048
- India
| | - Rohit G. Jadhav
- Department of Chemistry
- Indian Institute of Technology
- Indore-453552
- India
| | - Aniket P. Sarkate
- Department of Chemical Technology
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| | | | - Shailee V. Tiwari
- Department of Pharmaceutical Chemistry
- Durgamata Institute of Pharmacy
- Dharmapuri, Parbhani-431401
- India
| | - Bapurao B. Shingate
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| |
Collapse
|
18
|
Srinivas S, Neeraja P, Banothu V, Kumar Dubey P, Mukkanti K, Pal S. Synthesis, Biological Evaluation and
In silico
Studies of Compounds Based on Tryptophan‐Naproxen‐Triazole Hybrids. ChemistrySelect 2020. [DOI: 10.1002/slct.202003786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suryapeta Srinivas
- Alembic Pharmaceuticals Ltd, 450 MN Park, Genome Valley, Turkapally Village, Shameerpet, Medchal Malkajgiri 500101 India
| | - Papigani Neeraja
- Department of Chemistry DVR College of Engineering & Technology, Kashipur (village), Sangareddy District Telangana 502285 India
| | | | | | - Khagga Mukkanti
- Center for Chemical Sciences and Technology, IST, JNTUH Hyderabad 500085 India
| | - Sarbani Pal
- Department of Chemistry MNR Degree & PG College, Kukatpally Hyderabad 500085 India
| |
Collapse
|
19
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
20
|
Shahzad S, Qadir MA, Ahmed M, Ahmad S, Khan MJ, Gulzar A, Muddassar M. Folic acid-sulfonamide conjugates as antibacterial agents: design, synthesis and molecular docking studies. RSC Adv 2020; 10:42983-42992. [PMID: 35514930 PMCID: PMC9058261 DOI: 10.1039/d0ra09051d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
Dihydrofolate reductase (DHFR) inhibitors, as antibacterial agents, contain pyrimidine, pteridine, and azine moieties among many other scaffolds. Folic acid (FA), with a pteridine ring and amine group, was used as our focus scaffold, which was then conjugated with sulfonamides to develop new conjugates. The novel synthesized conjugates were characterized using infrared spectroscopy, and 1H and 13C nuclear magnetic resonance (NMR) spectral studies and consequently screened for antimicrobial activities against bacterial strains with ampicillin as a positive control. Compound DS2 has the highest zone of inhibition (36.6 mm) with a percentage activity index (%AI) value of 122.8% against S. aureus and a minimum inhibitory concentration (MIC) of 15.63 μg mL-1. DHFR enzyme inhibition was also evaluated using the synthesized conjugates through in vitro studies, and inhibition assays revealed that compound DS2 exhibited a 75.4 ± 0.12% (mean ± standard error of the mean (SEM)) inhibition, which is comparable with the standard DHFR inhibitor trimethoprim (74.6 ± 0.09%). The compounds attached to the unsubstituted aryl moiety of the sulfonamides revealed better inhibition against the bacterial strains as compared to the methyl substituted aryl sulfonamides. Molecular docking studies of the novel synthesized conjugates were also performed on the DHFR enzyme to identify the plausible binding modes to explore the binding mechanisms of these conjugates.
Collapse
Affiliation(s)
- Shabnam Shahzad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | | | - Mahmood Ahmed
- Renacon Pharma Limited Lahore-54600 Pakistan .,Division of Science and Technology, University of Education Lahore Pakistan
| | - Saghir Ahmad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Asad Gulzar
- Division of Science and Technology, University of Education Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| |
Collapse
|
21
|
Elzahhar PA, Abd El Wahab SM, Elagawany M, Daabees H, Belal AS, EL-Yazbi AF, Eid AH, Alaaeddine R, Hegazy RR, Allam RM, Helmy MW, Bahaa Elgendy, Angeli A, El-Hawash SA, Supuran CT. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem 2020; 200:112439. [DOI: 10.1016/j.ejmech.2020.112439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
22
|
Paczkowski IM, Guedes EP, Mass EB, Meneses EW, Marques LA, Mantovani MS, Russowsky D. Synthesis of hybrid perillyl‐4
H
‐pyrans. Cytotoxicity evaluation against hepatocellular carcinoma
HepG2
/
C3A
cell line. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ingrid M. Paczkowski
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Esthéfani P. Guedes
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Eduardo B. Mass
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Eliana W. Meneses
- Laboratório de Sólidos & Superfícies, Instituto de Química, Departamento de Química InorgânicaUniversidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Lilian A. Marques
- Laboratório de Genética Toxicológica, Centro de Ciências Biológicas, Departamento de Biologia GeralUniversidade Estadual de Londrina Rodovia Celso Garcia, Londrina Brazil
| | - Mário S. Mantovani
- Laboratório de Genética Toxicológica, Centro de Ciências Biológicas, Departamento de Biologia GeralUniversidade Estadual de Londrina Rodovia Celso Garcia, Londrina Brazil
| | - Dennis Russowsky
- Laboratório de Sínteses Orgânicas, Instituto de QuímicaDepartamento de Química Orgânica, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
23
|
|
24
|
Regioselective synthesis, antibacterial, and antioxidant activities of ester-linked 1,4-disubstituted 1,2,3-triazoles. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02604-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Dharavath R, Nagaraju N, Reddy MR, Ashok D, Sarasija M, Vijjulatha M, T V, Jyothi K, Prashanthi G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles. RSC Adv 2020; 10:11615-11623. [PMID: 35496603 PMCID: PMC9050871 DOI: 10.1039/d0ra01052a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 11/21/2022] Open
Abstract
Coumarin-based 1,4-disubstituted 1,2,3-triazole derivatives were synthesized using a highly efficient, eco-friendly protocol via a copper(i)-catalyzed click reaction between various substituted arylazides and terminal alkynes. The synthetic route was easy to access and gave excellent yields under microwave irradiation conditions compared to the conventional heating route. The structures of all the compounds were characterized by IR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. All the synthesized compounds were screened for their in vitro antimicrobial, antioxidant and anti-inflammatory activities; among all compounds, 8a, 8j, 8k and 8l exhibited better results with respect to standard drugs. Furthermore, molecular docking studies have been carried out with PDB IDs 2VCX (anti-inflammatory), 3VXI (antioxidant), 4GEE (antimicrobial) and 2XFH (antifungal) using the Glide module of the Schrödinger suite. The final compounds 8d, 8e, 8h, and 8k showed the highest hydrogen bond interactions with His-88 and Val-191 proteins and with water in all the proteins.
Collapse
Affiliation(s)
- Ravinder Dharavath
- Green and Medicinal Chemistry Lab, Department of Chemistry, Osmania University Hyderabad-500007 India
| | - Nalaparaju Nagaraju
- Green and Medicinal Chemistry Lab, Department of Chemistry, Osmania University Hyderabad-500007 India
| | - M Ram Reddy
- Green and Medicinal Chemistry Lab, Department of Chemistry, Osmania University Hyderabad-500007 India
| | - D Ashok
- Green and Medicinal Chemistry Lab, Department of Chemistry, Osmania University Hyderabad-500007 India
| | - M Sarasija
- Department of Chemistry, Satavahana University Karimnagar-505001 India
| | - M Vijjulatha
- Molecular Modelling and Medicinal Chemistry Group, Department of Chemistry, Osmania University Hyderabad-500007 India
| | - Vani T
- Molecular Modelling and Medicinal Chemistry Group, Department of Chemistry, Osmania University Hyderabad-500007 India
| | - K Jyothi
- Department of Pharmaceutical Chemistry, St Mary's College of Pharmacy Secunderabad-500025 India
| | - G Prashanthi
- Department of Pharmaceutical Chemistry, St Mary's College of Pharmacy Secunderabad-500025 India
| |
Collapse
|
26
|
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020; 10:5610-5635. [PMID: 35497465 PMCID: PMC9049420 DOI: 10.1039/c9ra09510a] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The review lays emphasis on the significance of 1,2,3-triazoles synthesized via CuAAC reaction having potential to act as anti-microbial, anti-cancer, anti-viral, anti-inflammatory, anti-tuberculosis, anti-diabetic, and anti-Alzheimer drugs. The importance of click chemistry is due to its 'quicker' methodology that has the capability to create complex and efficient drugs with high yield and purity from simple and cheap starting materials. The activity of different triazolyl compounds was compiled considering MIC, IC50, and EC50 values against different species of microbes. In addition to this, the anti-oxidant property of triazolyl compounds have also been reviewed and discussed.
Collapse
Affiliation(s)
- Alisha Rani
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurjaspreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Akshpreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Ubair Maqbool
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 India
| | - Jandeep Singh
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| |
Collapse
|
27
|
Luxmi R, Kaushik CP, Kumar D, Kumar K, Pahwa A, Sangwan J, Chahal M. A convenient synthesis and crystal structure of disubstituted 1,2,3-triazoles having ether functionality. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1672744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Devinder Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Manisha Chahal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
28
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
29
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
30
|
Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity. Heliyon 2019; 5:e02408. [PMID: 31517128 PMCID: PMC6734327 DOI: 10.1016/j.heliyon.2019.e02408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
In this study, we report our contribution to the application of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction for the synthesis of β-keto-1,2,3-triazole derivatives 3a-f from ethinylestradiol and their application in the inhibition of two human cancer cells lines: human breast adenocarcinoma (MCF-7) and human hepatocellular carcinoma (HepG2). The β-keto-1,2,3-triazole derivates 3a-f exhibited moderate cytotoxic activity for the HepG2 cells with IC50 values of 29.7 μM (3a), 16.4 μM (3b), 17.8 μM (3c), 20.4 μM (3d), 28.1 μM (3e) and 28.2 μM (3f). The semi-synthetic β-keto-1,2,3-triazoles derivatives 3a-f were all characterized by FT-IR, NMR, HRMS and [α]D.
Collapse
|
31
|
|
32
|
Khare SP, Deshmukh TR, Sangshetti JN, Khedkar VM, Shingate BB. Ultrasound assisted rapid synthesis, biological evaluation, and molecular docking study of new 1,2,3-triazolyl pyrano[2,3-c]pyrazoles as antifungal and antioxidant agent. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1631849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Smita P. Khare
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MH, India
| | - Tejshri R. Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MH, India
| | | | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, MH, India
| | - Bapurao B. Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MH, India
| |
Collapse
|
33
|
Khare SP, Deshmukh TR, Akolkar SV, Sangshetti JN, Khedkar VM, Shingate BB. New 1,2,3-triazole-linked tetrahydrobenzo[b]pyran derivatives: Facile synthesis, biological evaluation and molecular docking study. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03906-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Catarro M, Serrano JL, Ramos SS, Silvestre S, Almeida P. Nimesulide analogues: From anti-inflammatory to antitumor agents. Bioorg Chem 2019; 88:102966. [PMID: 31075744 DOI: 10.1016/j.bioorg.2019.102966] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Nimesulide is a nonsteroidal anti-inflammatory drug possessing analgesic and antipyretic properties. This drug is considered a selective cyclooxygenase-2 (COX-2) inhibitor and, more recently, has been associated to antitumor activity. Thus, numerous works have been developed to modify the nimesulide skeleton aiming to develop new and more potent and selective COX-2 inhibitors as well as potential anticancer agents. This review intends to provide an overview on analogues of nimesulide, including the general synthetic approaches used for their preparation and structural diversification and their main anti-inflammatory and/or antitumor properties.
Collapse
Affiliation(s)
- Mafalda Catarro
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João L Serrano
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana S Ramos
- FibEnTech - UBI, Materiais Fibrosos e Tecnologias Ambientais, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-517 Coimbra, Portugal
| | - Paulo Almeida
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
35
|
An efficient green diversity oriented synthesis of pyrimidinone and indole appended macrocyclic peptidomimetics. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Rayam P, Polkam N, Kummari B, Banothu V, Gandamalla D, Yellu NR, Anireddy JS. Synthesis and Biological Evaluation of New Ibuprofen‐1,3,4‐oxadiazole‐1,2,3‐triazole Hybrids. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Parsharamulu Rayam
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad Telangana State 500085 India
| | - Naveen Polkam
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad Telangana State 500085 India
| | - Bhaskar Kummari
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad Telangana State 500085 India
| | - Venkanna Banothu
- Department of BiotechnologyIST, Jawaharlal Nehru Technological University Hyderabad Hyderabad Telangana State 500085 India
| | - Durgaiah Gandamalla
- Department of Pharmacology and Toxicology, UCPScKakatiya University Warangal Telangana State 506009 India
| | - Narsimha Reddy Yellu
- Department of Pharmacology and Toxicology, UCPScKakatiya University Warangal Telangana State 506009 India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences and Technology, ISTJawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad Telangana State 500085 India
| |
Collapse
|
37
|
Almatary AM, Elmorsy MA, El Husseiny WM, Selim KB, El-Sayed MAA. Design, synthesis, and molecular modeling of heterocyclic bioisostere as potent PDE4 inhibitors. Arch Pharm (Weinheim) 2018; 351:e1700403. [PMID: 29573453 DOI: 10.1002/ardp.201700403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/05/2022]
Abstract
A new hybrid template was designed by combining the structural features of phosphodiesterase 4 (PDE4) inhibitors with several heterocyclic moieties which present an integral part in the skeleton of many apoptotic agents. Thirteen compounds of the synthesized hybrids displayed higher inhibitory activity against PDE4B than the reference drug, roflumilast. Further investigation indicated that compounds 13b and 20 arrested the cell cycle at the G2/M phase and the pre-G1 phase, and induced cell death by apoptosis of A549 cells in a caspase-dependent manner.
Collapse
Affiliation(s)
- Aya M Almatary
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Horus University, New Damietta, Egypt
| | - Mohammad A Elmorsy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Walaa M El Husseiny
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Khalid B Selim
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Magda A-A El-Sayed
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
38
|
Pathoor R, Bahulayan D. MCR-click synthesis, molecular docking and cytotoxicity evaluation of a new series of indole–triazole–coumarin hybrid peptidomimetics. NEW J CHEM 2018. [DOI: 10.1039/c8nj00032h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design and synthesis of a new series of indole–triazole-coumarin hybrids as potential CDK2 inhibitors is described.
Collapse
Affiliation(s)
- Rajeena Pathoor
- Department of Chemistry
- University of Calicut
- Malappuram 673635
- India
| | - D. Bahulayan
- Department of Chemistry
- University of Calicut
- Malappuram 673635
- India
| |
Collapse
|
39
|
Pervaram S, Ashok D, Rao BA, Sarasija M, Reddy CVR. Design and synthesis of new 1,2,3-triazole-pyrazole hybrids as antimicrobial agents. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217100280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Kaushik CP, Luxmi R. Facile expeditious one-pot synthesis and antifungal evaluation of disubstituted 1,2,3-triazole with two amide linkages. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1369124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
41
|
Gu W, Wang S, Jin X, Zhang Y, Hua D, Miao T, Tao X, Wang S. Synthesis and Evaluation of New Quinoxaline Derivatives of Dehydroabietic Acid as Potential Antitumor Agents. Molecules 2017; 22:molecules22071154. [PMID: 28696365 PMCID: PMC6152277 DOI: 10.3390/molecules22071154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/04/2017] [Indexed: 01/19/2023] Open
Abstract
A series of new quinoxaline derivatives of dehydroabietic acid (DAA) were designed and synthesized as potential antitumor agents. Their structures were characterized by IR, 1H-NMR, 13C-NMR, and MS spectra and elemental analyses. All the new compounds were screened for their in vitro antiproliferative activities against three human cancer cell lines (MCF-7, SMMC-7721 and HeLa) and noncancerous human hepatocyte cells (LO2). A cytotoxic assay manifested that compound 4b showed the most potent cytotoxic activity against the three cancer cell lines, with IC50 values of 1.78 ± 0.36, 0.72 ± 0.09 and 1.08 ± 0.12 μM, respectively, and a substantially lower cytotoxicity to LO2 cells (IC50: 11.09 ± 0.57 μM). Moreover, the cell cycle analysis suggested that compound 4b caused cell cycle arrest of SMMC-7721 cells at the G0/G1 phase. In a Hoechst 33258 staining assay, compound 4b caused considerable morphological changes of the nuclei of SMMC-7721 cells, correlated with cell apoptosis. In addition, an Annexin V-FITC/PI dual staining assay confirmed that compound 4b could induce the apoptosis of SMMC-7721 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Wen Gu
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuang Wang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoyan Jin
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yaliang Zhang
- The State Key Lab of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Dawei Hua
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tingting Miao
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xubing Tao
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
42
|
Artyushin OI, Sharova EV, Vinogradova NM, Genkina GK, Moiseeva AA, Klemenkova ZS, Orshanskaya IR, Shtro AA, Kadyrova RA, Zarubaev VV, Yarovaya OI, Salakhutdinov NF, Brel VK. Synthesis of camphecene derivatives using click chemistry methodology and study of their antiviral activity. Bioorg Med Chem Lett 2017; 27:2181-2184. [PMID: 28366530 DOI: 10.1016/j.bmcl.2017.03.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022]
Abstract
A series of seventeen tetrazole derivatives of 1,7,7-trimethyl-[2.2.1]bicycloheptane were synthesized using click chemistry methodology and characterized by spectral data. Studies of cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells of the compounds obtained were performed. The structure-activity relationship analysis suggests that to possess virus-inhibiting activity, the compounds of this group should bear oxygen atom with a short linker (C2-C4), either as a hydroxyl group (18, 19, 29), keto-group (21) or as a part of a heterocycle (24). These compounds demonstrated low cytotoxicity along with high anti-viral activity.
Collapse
Affiliation(s)
- Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation
| | - Elena V Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation
| | - Natalya M Vinogradova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation
| | - Galina K Genkina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation
| | - Aleksandra A Moiseeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation
| | - Zinaida S Klemenkova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation
| | - Iana R Orshanskaya
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russian Federation
| | - Anna A Shtro
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russian Federation
| | - Renata A Kadyrova
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russian Federation
| | - Vladimir V Zarubaev
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russian Federation
| | - Olga I Yarovaya
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russian Federation
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28, Vavilova St., GSP-1, V-334, 119991 Moscow, Russian Federation.
| |
Collapse
|