1
|
Cheng X, Li C, Hong H, Zhou Z, Wu Z. Macrocyclic RGD-peptides with high selectivity for α vβ 3 integrin in cancer imaging and therapy. RSC Med Chem 2025:d5md00280j. [PMID: 40370651 PMCID: PMC12070224 DOI: 10.1039/d5md00280j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
Integrins, particularly the αvβ3 subtype, are critical receptors involved in cell adhesion, migration, and signaling, playing a significant role in tumor progression and metastasis. Despite extensive research into integrin-targeted therapies, challenges remain in developing ligands that exhibit high selectivity for αvβ3 over other integrin subtypes, such as αvβ5. This study employs a one-pot sortase A-mediated on-resin peptide cleavage and in situ cyclization method to synthesize two generations of macrocyclic RGD-peptide libraries. Systematic screening through surface plasmon resonance and cell-based competition assays identified the lead compound, c-(G5RGDKcLPET), which demonstrated high affinity and selectivity for αvβ3. Additionally, the optimized cyclic peptide was functionalized with a fluorescent dye (Cy5) and the cytotoxic drug monomethyl auristatin E (MMAE), enhancing its potential for cancer imaging and targeted therapy. This work contributes a novel platform for developing integrin-targeted diagnostics and therapeutics, highlighting the importance of macrocyclic peptides in cancer treatment strategies.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
- School of Biological and Food Engineering, Hefei Normal University Hefei 230601 China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| |
Collapse
|
2
|
Chen Y, Jia L, Zhu G, Wang W, Geng M, Lu H, Zhang Y, Zhou M, Zhang F, Cheng X. Sortase A-mediated cyclization of novel polycyclic RGD peptides for α νβ 3 integrin targeting. Bioorg Med Chem Lett 2022; 73:128888. [PMID: 35839966 DOI: 10.1016/j.bmcl.2022.128888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Cyclic arginine-glycine-aspartic (RGD) peptides that specifically bind to integrin ανβ3 have been developed for drug delivery, tracers, and imaging for tumor diagnosis and treatment. Herein, a series of polycyclic RGD peptides containing dual, tri, and tetra rings were designed and synthesized through sortase A-mediated ligation. An in vitro test on cell adhesion inhibition indicated that the RGD peptide containing tricylic structure exhibited outstanding potency and selectivity for ανβ3 integrin.
Collapse
Affiliation(s)
- Yajun Chen
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Lixuan Jia
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Guilan Zhu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Ming Geng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Hongxia Lu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Yan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Minghui Zhou
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Fangyan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Xiaozhong Cheng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
3
|
Liu J, Cheng X, Tian X, Guan D, Ao J, Wu Z, Huang W, Le Z. Design and synthesis of novel dual-cyclic RGD peptides for αvβ3 integrin targeting. Bioorg Med Chem Lett 2019; 29:896-900. [DOI: 10.1016/j.bmcl.2019.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023]
|
4
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
5
|
Arkenberg MR, Moore DM, Lin CC. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Acta Biomater 2019; 83:83-95. [PMID: 30415064 PMCID: PMC6697659 DOI: 10.1016/j.actbio.2018.11.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Cell-laden hydrogels whose crosslinking density can be dynamically and reversibly tuned are highly sought-after for studying pathophysiological cellular fate processes, including embryogenesis, fibrosis, and tumorigenesis. Special efforts have focused on controlling network crosslinking in poly(ethylene glycol) (PEG) based hydrogels to evaluate the impact of matrix mechanics on cell proliferation, morphogenesis, and differentiation. In this study, we sought to design dynamic PEG-peptide hydrogels that permit cyclic/reversible stiffening and softening. This was achieved by utilizing reversible enzymatic reactions that afford specificity, biorthogonality, and predictable reaction kinetics. To that end, we prepared PEG-peptide conjugates to enable sortase A (SrtA) induced tunable hydrogel crosslinking independent of macromer contents. Uniquely, these hydrogels can be completely degraded by the same enzymatic reactions and the degradation rate can be tuned from hours to days. We further synthesized SrtA-sensitive peptide linker (i.e., KCLPRTGCK) for crosslinking with 8-arm PEG-norbornene (PEG8NB) via thiol-norbornene photocrosslinking. These hydrogels afford diverse softening paradigms through control of network structures during crosslinking or by adjusting enzymatic parameters during on-demand softening. Importantly, user-controlled hydrogel softening promoted spreading of human mesenchymal stem cells (hMSCs) in 3D. Finally, we designed a bis-cysteine-bearing linear peptide flanked with SrtA substrates at the peptide's N- and C-termini (i.e., NH2-GGGCKGGGKCLPRTG-CONH2) to enable cyclic/reversible hydrogel stiffening/softening. We show that matrix stiffening and softening play a crucial role in growth and chemoresistance in pancreatic cancer cells. These results represent the first dynamic hydrogel platform that affords cyclic gel stiffening/softening based on reversible enzymatic reactions. More importantly, the chemical motifs that affords such reversible crosslinking were built-in on the linear peptide crosslinker without any post-synthesis modification. STATEMENT OF SIGNIFICANCE: Cell-laden 'dynamic' hydrogels are typically designed to enable externally stimulated stiffening or softening of the hydrogel network. However, no enzymatic reaction has been used to reversibly control matrix crosslinking. The application of SrtA-mediated transpeptidation in crosslinking and post-gelation modification of biomimetic hydrogels is innovative because of the specificity of the reaction and reversible tunability of crosslinking kinetics. While SrtA has been previously used to crosslink and fully degrade hydrogels, matrix softening and reversible stiffening of cell-laden hydrogels has not been reported. By designing simple peptide substrates, this unique enzymatic reaction can be employed to form a primary network, to gradually soften hydrogels, or to reversibly stiffen hydrogels. As a result, this dynamic hydrogel platform can be used to answer important matrix-related biological questions that are otherwise difficult to address.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Dustin M Moore
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Ge F, Qiao Q, Zhu L, Li W, Song P, Zhu L, Tao Y, Gui L. Preparation of a tumor-targeted drug-loading material, amphiphilic peptide P10, and analysis of its anti-tumor activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:3. [PMID: 30569205 DOI: 10.1007/s10856-018-6204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
A new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) was designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics were studied. P10 was synthesized by solid-state synthesis and doxorubicin (DOX) was loaded via dialysis. P10 and DOX were mixed with a mass ratio of 6:1 to form regular round spheres. The interconnection between groups was analyzed spectroscopically and the sphere morphology was studied with SEM and a zeta particle size analyzer. Fluorescence spectroscopy was used to analyze the ability of P10 to form micelles and the efficiency of micelle entrapment, and the drug-loading ratio and drug release characteristics were detected. Finally, the in vitro antitumor activity of P10 was studied with HeLa cells as a model. The results showed that P10's critical micelle concentration (CMC) value and its average grain diameter were approximately 0.045 mg/L and 500 nm. The micelle entrapment ratio and drug-loading ratio were 23.011 ± 2.88 and 10.125 ± 2.62%, respectively, and the in vitro drug-releasing properties of P10 were described by the Zero-order model and the Ritger-Peppas model. Compared with DOX, P10-DOX had a higher tumor cell inhibition ratio and a dose-effect relationship with concentration. When P10-DOX's concentration was 20 μg/mL, the inhibition ratio was 44.17%. The new amphiphilic peptide designed and prepared in this study could be a tumor-targeted drug-loading material with better prospects for application. In this paper, a new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) is designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics are studied, providing a theoretical basis and design ideas for further studies and the development of targeted drug-loading materials on tumor cells.
Collapse
Affiliation(s)
- Fei Ge
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Qianqian Qiao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longbao Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Wanzhen Li
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Ping Song
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longlong Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Yugui Tao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China.
| | - Lin Gui
- Department of Microbiology and immunology, Wannan Medical College, No. 22 Wenchang West Road, 241002, Wuhu, China.
| |
Collapse
|
7
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
8
|
Cheng X, Hong H, Zhou Z, Wu Z. Enzymatic On-Resin Peptide Cleavage and in Situ Cyclization One-Pot Strategy for the Synthesis of Cyclopeptide and Cyclotide. J Org Chem 2018; 83:14078-14083. [PMID: 30277068 DOI: 10.1021/acs.joc.8b02032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A one-pot strategy combining sortase A mediated on-resin peptide cleavage and in situ cyclization was developed for the synthesis of cyclic peptides. This strategy was applied to synthesize head-to-tail cyclic antibacterial bovine lactoferricin peptide LFcinB20-35 in a yield of 67%. The one-pot strategy was compatible with an oxidative folding reaction, and complex cyclotides containing one or two disulfide bonds, such as sunflower trypsin inhibitors-1 and α-conotoxin MII, were successfully synthesized in one pot in a yield of 77% and 61%, respectively.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
9
|
Cheng X, Zhu T, Hong H, Zhou Z, Wu Z. Sortase A-mediated on-resin peptide cleavage and in situ ligation: an efficient one-pot strategy for the synthesis of functional peptides and proteins. Org Chem Front 2017. [DOI: 10.1039/c7qo00481h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot approach combining Sortase A mediated on-resin peptide cleavage, activation and in situ ligation was developed and was employed to synthesize dual functional peptides, modify peptides with lipid, biotin and PEG, as well as protein N-terminal labeling in high efficiency.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Tao Zhu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|