1
|
Tan P, Wang S, Li G, Wang H, Zhao Z, Jiang H, Xie L, Yang L, Chen J, Zhang Z. Oxidative Cascade Iodocyclization of 1, n-Dienes: Synthesis of Iodinated Benzo[ b]azepine and Benzo[ b]azocine Derivatives. J Org Chem 2024; 89:6405-6415. [PMID: 38603543 DOI: 10.1021/acs.joc.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
An oxidative cascade iodocyclization of 1,7- or 1,8-dienes has been realized under mild conditions. By employing I2 as an iodine source, this protocol provides a concise and efficient approach to a great deal of biologically significant iodinated benzo[b]azepine and benzo[b]azocine derivatives in moderate to good yields. The gram-scale synthesis and further transformation of products render the approach practical and attractive. Radical trapping and deuterium-labeling experiments help to understand the mechanism.
Collapse
Affiliation(s)
- Pengpeng Tan
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shilong Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Guiling Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Huichao Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ziheng Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Haochen Jiang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, P. R. China
| | - Liru Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jinchun Chen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhen Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
2
|
Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, Qiao A. Activation and signaling mechanism revealed by GPR119-G s complex structures. Nat Commun 2022; 13:7033. [PMID: 36396650 PMCID: PMC9671963 DOI: 10.1038/s41467-022-34696-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Agonists selectively targeting cannabinoid receptor-like G-protein-coupled receptor (GPCR) GPR119 hold promise for treating metabolic disorders while avoiding unwanted side effects. Here we present the cryo-electron microscopy (cryo-EM) structures of the human GPR119-Gs signaling complexes bound to AR231453 and MBX-2982, two representative agonists reported for GPR119. The structures reveal a one-amino acid shift of the conserved proline residue of TM5 that forms an outward bulge, opening up a hydrophobic cavity between TM4 and TM5 at the middle of the membrane for its endogenous ligands-monounsaturated lipid metabolites. In addition, we observed a salt bridge between ICL1 of GPR119 and Gβs. Disruption of the salt bridge eliminates the cAMP production of GPR119, indicating an important role of Gβs in GPR119-mediated signaling. Our structures, together with mutagenesis studies, illustrate the conserved binding mode of the chemically different agonists, and provide insights into the conformational changes in receptor activation and G protein coupling.
Collapse
Affiliation(s)
- Yuxia Qian
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Jiening Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Lina Wang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Yun Lin
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Hong Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Lixin Ma
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Sheng Ye
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China ,grid.13402.340000 0004 1759 700XLife Sciences Institute, Zhejiang University, Hangzhou, Zhejiang China
| | - Shan Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Anna Qiao
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
3
|
Sivanantham M, Jennifer G A, Varathan E, Ramasamy M, Senadi GC. Iodo-sulphonylation of 1,6-enynones: a metal-free strategy to synthesize N-substituted succinimides. Org Biomol Chem 2022; 20:7942-7948. [PMID: 36178240 DOI: 10.1039/d2ob01277d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iodine-mediated radical cyclization of 1,6-enynones with sulphonyl hydrazides using tert-butyl hydroperoxide (TBHP) as the oxidant has been developed for the synthesis of iodo-sulphonylated-succinimide derivatives. The notable advantages of the developed method are metal-free conditions, broad functional group tolerance, column chromatography-free purification, high stereoselectivity (E isomer), shorter reaction times, and the cascade construction of three new bonds (C-S, C-I, and C-C). The synthetic application of the iodo-functionality has been extended to the Heck coupling reaction with acrylonitrile and to the Suzuki coupling reaction with benzene boronic acid.
Collapse
Affiliation(s)
- Mathiyazhagan Sivanantham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Abigail Jennifer G
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Elumalai Varathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Mohankumar Ramasamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India. .,Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Cortelazzo-Polisini E, Boisbrun M, Gansmüller AH, Comoy C. Photoisomerization of Arylidene Heterocycles: Toward the Formation of Fused Heterocyclic Quinolines. J Org Chem 2022; 87:9699-9713. [PMID: 35801862 DOI: 10.1021/acs.joc.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the photoinduced isomerization of a series of arylidene heterocycles 1. The photoreaction mechanism was investigated by a combined UV-vis/photo-NMR spectroscopic study, and we showed that Ar-TZDs exhibit a positive P-type photochromism, which limits their isomerization efficiency. By exploring the solvatochromism in a series of solvents, the conditions favoring the conversion toward one or the other stereoisomer have been studied, in particular by choosing the appropriate wavelengths. Finally, the extension of this photoisomerization study was proposed with a convenient preparation of various fused heterocyclic quinolines in good overall yields.
Collapse
Affiliation(s)
| | | | | | - Corinne Comoy
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| |
Collapse
|
5
|
Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazoles. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1945601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Atam B. Tekale
- Department of Chemistry, Shri Shivaji College, Parbhani, India
| | | | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad, India
| | | |
Collapse
|
6
|
Ge Y, Ye F, Yang J, Spannenberg A, Jackstell R, Beller M. Palladium-Catalyzed Domino Aminocarbonylation of Alkynols: Direct and Selective Synthesis of Itaconimides. JACS AU 2021; 1:1257-1265. [PMID: 34467363 PMCID: PMC8397365 DOI: 10.1021/jacsau.1c00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The first direct and selective synthesis of substituted itaconimdes by palladium-catalyzed aminocarbonylation of alkynols is reported. Key to the success of this transformation is the use of a novel catalyst system involving ligand L11 and appropriate reaction conditions. In the protocol here presented, easily available propargylic alcohols react with N-nucleophiles including aryl- and alkylamines as well as aryl hydrazines to provide a broad variety of interesting heterocycles with high catalyst activity and excellent selectivity. The synthetic utility of the protocol is demonstrated in the synthesis of natural product 11 with aminocarbonylation as the key step. Mechanistic studies and control experiments reveal the crucial role of the hydroxyl group in the substrate for the control of selectivity.
Collapse
Affiliation(s)
- Yao Ge
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Fei Ye
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Key Laboratory of Organosilicon Material Technology
of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, 311121 Hangzhou, P. R. China
| | - Ji Yang
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| |
Collapse
|
7
|
Manaithiya A, Alam O, Sharma V, Javed Naim M, Mittal S, Khan IA. GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. Bioorg Chem 2021; 113:104998. [PMID: 34048996 DOI: 10.1016/j.bioorg.2021.104998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus type 2 (T2D) is a group of genetically heterogeneous metabolic disorders whose frequency has gradually risen worldwide. Diabetes mellitus Type 2 (T2D) has started to achieve a pandemic level, and it is estimated that within the next decade, cases of diabetes might get double due to increase in aging population. Diabetes is rightly called the 'silent killer' because it has emerged to be one of the major causes, leading to renal failure, loss of vision; besides cardiac arrest in India. Thus, a clinical requirement for the oral drug molecules monitoring glucose homeostasis appears to be unmet. GPR119 agonist, a family of G-protein coupled receptors, usually noticed in β-cells of pancreatic as well as intestinal L cells, drew considerable interest for type 2 diabetes mellitus (T2D). GPR119 monitors physiological mechanisms that enhance homeostasis of glucose, such as glucose-like peptide-1, gastrointestinal incretin hormone levels, pancreatic beta cell-dependent insulin secretion and glucose-dependent insulinotropic peptide (GIP). In this manuscript, we have reviewed the work done in the last five years (2015-2020) which gives an approach to design, synthesize, evaluate and study the structural activity relationship of novel GPR119 agonist-based lead compounds. Our article would help the researchers and guide their endeavours in the direction of strategy and development of innovative, effective GPR119 agonist-based compounds for the management of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Shruti Mittal
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
8
|
Gu Y, Dai L, Zhang J, Lu X, Liu X, Wang C, Zhang J, Rong L. Silver-Catalyzed Radical Cascade Sulfonation/Cycloaddition for the Construction of Multifunctional Succimides Containing Separable Z/ E-Isomers. J Org Chem 2021; 86:2173-2183. [PMID: 33475351 DOI: 10.1021/acs.joc.0c02275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silver-catalyzed cascade cycloaddition of aza-1,6-enynes, affording multifunctional succimide frameworks initiated by the arylsulfonyl radical addition, has been developed. This process shows mild reaction conditions, excellent structural selectivity, and broad functional group tolerance. In addition, the Z/E-isomers can be easily separated, which provides an efficient method for obtaining pure Z/E-configuration products.
Collapse
Affiliation(s)
- Yan Gu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Lei Dai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinghang Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xinchi Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Jinpeng Zhang
- College of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, People's Republic of China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
9
|
Affiliation(s)
- Sukinah H. Ali
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
10
|
Gu Y, Dai L, Mao K, Zhang J, Wang C, Zhao L, Rong L. Time-Economical Radical Cascade Cyclization/Haloazidation of 1,6-Enynes: Construction of Highly Functional Succinimide Derivatives. Org Lett 2020; 22:2956-2960. [DOI: 10.1021/acs.orglett.0c00682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Lei Dai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Kaimin Mao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Jinghang Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Chang Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Liming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| |
Collapse
|
11
|
Dowarah J, Singh VP. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 2020; 28:115263. [PMID: 32008883 DOI: 10.1016/j.bmc.2019.115263] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the major diseases worldwide and is the third leading cause of death in the United States. Anti-diabetic drugs are used in the treatment of diabetes mellitus to control glucose levels in the blood. Most of the drugs are administered orally, except for a few of them, such as insulin, exenatide, and pramlintide. In this review, we are going to discuss seven major types of anti-diabetic drugs: Peroxisome proliferator-activated receptor (PPAR) agonist, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase inhibitors, α-glucosidase inhibitors, dipeptidyl peptidase IV (DPP-4) inhibitors, G protein-coupled receptor (GPCR) agonists and sodium-glucose co-transporter (SGLT) inhibitors. Here, we are also discussing some of the recently reported anti-diabetic agents with its multi-target pharmacological actions. This review summarises recent approaches and advancement in anti-diabetes treatment concerning characteristics, structure-activity relationships, functional mechanisms, expression regulation, and applications in medicine.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ved Prakash Singh
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
12
|
Luo K, Bao Y, Liu F, Xiao C, Li K, Zhang C, Huang R, Lin J, Zhang J, Jin Y. Synthesis and biological evaluation of novel benzylidene-succinimide derivatives as noncytotoxic antiangiogenic inhibitors with anticolorectal cancer activity in vivo. Eur J Med Chem 2019; 179:805-827. [DOI: 10.1016/j.ejmech.2019.06.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/05/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
|
13
|
Nural Y. Synthesis, antimycobacterial activity, and acid dissociation constants of polyfunctionalized 3-[2-(pyrrolidin-1-yl)thiazole-5-carbonyl]-2H-chromen-2-one derivatives. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2250-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Wu QF, Zhao B, Fan ZJ, Zhao JB, Guo XF, Yang DY, Zhang NL, Yu B, Kalinina T, Glukhareva T. Design, synthesis and fungicidal activity of isothiazole–thiazole derivatives. RSC Adv 2018; 8:39593-39601. [PMID: 35558013 PMCID: PMC9090924 DOI: 10.1039/c8ra07619g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
3,4-Dichloroisothiazoles can induce systemic acquired resistance (SAR) to enhance plant resistance against a subsequent pathogen attack, and oxathiapiprolin exhibits excellent anti-fungal activity against oomycetes targeting at the oxysterol-binding protein. To discover novel chemicals with systemic acquired resistance and fungicidal activity, 21 novel isothiazole–thiazole derivatives were designed, synthesized and characterized according to the active compound derivatization method. Compound 6u, with EC50 values of 0.046 mg L−1 and 0.20 mg L−1 against Pseudoperonospora cubensis (Berk. et Curt.) Rostov and Phytophthora infestans in vivo, might act at the same target as oxysterol binding protein (PcORP1) of oxathiapiprolin; this result was validated by cross-resistance and molecular docking studies. The expression of the systemic acquired resistance gene pr1 was significantly up-regulated after treating with compound 6u for 24 h (43-fold) and 48 h (122-fold). These results can help the development of isothiazole–thiazole-based novel fungicides. Compound 6u exhibits ultrahigh fungicidal activity by acting at its potent target PcORP1 and induces systemic acquired resistance by activating the salicylic acid pathway.![]()
Collapse
|