1
|
Nabi F, Ahmad O, Fatima A, Ahmad A, Sharma J, Khan RH. Small molecule inhibits BACE1 activity by a dual mechanism confirmed by simulations-based study. J Biomol Struct Dyn 2024:1-13. [PMID: 39633599 DOI: 10.1080/07391102.2024.2435641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) is a progressive and largely incurable neurodegenerative disorder that affects millions of people worldwide. It is characterised by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain. It is commenced by cleavage of amyloid precursor protein (APP) by β-secretase, β-site amyloid precursor protein cleaving enzyme (BACE1; also called Asp2, memapsin 2). Therefore, BACE1 is a prime target for developing therapeutics against AD. In this study, we have identified a small molecule that potentially inhibits the activity of BACE1 by interacting with the active site residues. Also, the flap region seems to be involved in enhancing the stability of the small molecule at the active site. We have used Umibecestat (CNP-520) as a positive control. Our in silico results show that the identified molecule has a much better orientation at the active site of BACE1 than Umibecestat and inhibits by blocking the active site and modulating flap dynamics. We have utilised virtual high-throughput screening assay, ADME profiling, and blood-brain-barrier crossing ability to narrow down potential leads. The two shortlisted molecules were then subjected to atomistic molecular dynamics simulations study. Overall, our study proposes a much better inhibitor and a rational molecule for lead development against AD.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aiman Fatima
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Aamna Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- Integral University, Lucknow, India
| | - Jyoti Sharma
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Suárez-González E, Sandoval-Ramírez J, Flores-Hernández J, Carrasco-Carballo A. Ginkgo biloba: Antioxidant Activity and In Silico Central Nervous System Potential. Curr Issues Mol Biol 2023; 45:9674-9691. [PMID: 38132450 PMCID: PMC10742658 DOI: 10.3390/cimb45120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
Ginkgo biloba (GB) extracts have been used in clinical studies as an alternative therapy for Alzheimer's disease (AD), but the exact bioaction mechanism has not yet been elucidated. In this work, an in silico study on GB metabolites was carried out using SwissTargetPrediction to determine the proteins associated with AD. The resulting proteins, AChE, MAO-A, MAO-B, β-secretase and γ-secretase, were studied by molecular docking, resulting in the finding that kaempferol, quercetin, and luteolin have multitarget potential against AD. These compounds also exhibit antioxidant activity towards reactive oxygen species (ROS), so antioxidant tests were performed on the extracts using the DPPH and ABTS techniques. The ethanol and ethyl acetate GB extracts showed an important inhibition percentage, higher than 80%, at a dose of 0.01 mg/mL. The effect of GB extracts on AD resulted in multitarget action through two pathways: firstly, inhibiting enzymes responsible for degrading neurotransmitters and forming amyloid plaques; secondly, decreasing ROS in the central nervous system (CNS), reducing its deterioration, and promoting the formation of amyloid plaques. The results of this work demonstrate the great potential of GB as a medicinal plant.
Collapse
Affiliation(s)
- Eduardo Suárez-González
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico;
- Laboratorio de Neuromodulación, Instituto de Fisiología, BUAP, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Síntesis y Modificación de Productos Naturales, FCQ-BUAP, Puebla 72570, Mexico;
| | | | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP-BUAP, Puebla 72570, Mexico;
| |
Collapse
|
3
|
Galeana-Ascencio RA, Mendieta L, Limon DI, Gnecco D, Terán JL, Orea ML, Carrasco-Carballo A. β-Secretase-1: In Silico Drug Reposition for Alzheimer's Disease. Int J Mol Sci 2023; 24:8164. [PMID: 37175873 PMCID: PMC10179340 DOI: 10.3390/ijms24098164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The β-secretase-1 enzyme (BACE-1) performs a key role in the production of beta-Amyloid protein (Aβ), which is associated with the development of Alzheimer's disease (AD). The inhibition of BACE-1 has been an important pharmacological strategy in the treatment of this neurodegenerative disease. This study aims to identify new potential candidates for the treatment of Alzheimer's with the help of in silico studies, such as molecular docking and ADME prediction, from a broad list of candidates provided by the DrugBank database. From this analysis, 1145 drugs capable of interacting with the enzyme with a higher coupling energy than Verubecestat were obtained, subsequently only 83 presented higher coupling energy than EJ7. Applying the oral route of administration as inclusion criteria, only 41 candidates met this requirement; however, 6 of them are associated with diagnostic tests and not treatment, so 33 candidates were obtained. Finally, five candidates were identified as possible BACE-1 inhibitors drugs: Fluphenazine, Naratriptan, Bazedoxifene, Frovatriptan, and Raloxifene. These candidates exhibit pharmacophore-specific features, including the indole or thioindole group, and interactions with key amino acids in BACE-1. Overall, this study provides insights into the potential use of in silico methods for drug repurposing and identification of new candidates for the treatment of Alzheimer's disease, especially those targeting BACE-1.
Collapse
Affiliation(s)
| | | | - Daniel I. Limon
- Laboratorio de Neurofarmacología, FCQ, BUAP, Puebla 72570, Mexico
| | - Dino Gnecco
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| | - Joel L. Terán
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| | - María L. Orea
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP, BUAP, Puebla 72570, Mexico;
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| |
Collapse
|
4
|
The current state of amyloidosis therapeutics and the potential role of fluorine in their treatment. Biochimie 2022; 202:123-135. [PMID: 35963462 DOI: 10.1016/j.biochi.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Amyloidosis, commonly known as amyloid-associated diseases, is characterized by improperly folded proteins accumulating in tissues and eventually causing organ damage, which is linked to several disorders ranging from neurodegenerative to peripheral diseases. It has an enormous societal and financial impact on the global health sector. Due to the complexity of protein misfolding and intertwined aggregation, there are no effective disease-modifying medications at present, and the condition is likely mis/non-diagnosed half of the time. Nonetheless, over the last two decades, substantial research into aggregation processes has revealed the possibilities of new intervention approaches. On the other hand, fluorine has been a rising star in therapeutic development for numerous neurodegenerative illnesses and other peripheral diseases. In this study, we revised and emphasized the possible significance of fluorine-modified therapeutic molecules and fluorine-modified nanoparticles (NPs) in the modulation of amyloidogenic proteins, including insulin, amyloid beta peptide (Aβ), prion protein (PrP), transthyretin (TTR) and Huntingtin (htt).
Collapse
|
5
|
Taoka BM, Wu WL, Hao J, Dolmaski M, Wang H, Levorse D, Orth P, Hyde LA, Smith B, Michener MS, Kennedy ME, Parker EM, Cumming JN. Design and discovery of C2-fluoroalkyl iminothiazine dioxides as BACE inhibitors. Bioorg Med Chem Lett 2022; 56:128463. [PMID: 34838652 DOI: 10.1016/j.bmcl.2021.128463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022]
Abstract
This paper describes the structure-activity-relationships of novel fluoroalkyl substituents at the C2 position of iminothiazine dioxide beta secretase inhibitors. Key discoveries include reduced amidine basicity and its effect on Pgp, cell potency, and efficacy in various preclinical in vivo efficacy animal models. Findings from these structure-activity-relationships are discussed.
Collapse
Affiliation(s)
- Brandon M Taoka
- Department of Discovery Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Wen-Lian Wu
- Department of Discovery Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jinsong Hao
- Department of Discovery Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Martin Dolmaski
- Department of Discovery Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Hongwu Wang
- Department of Computational and Structural Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Dorthy Levorse
- Department of Preclinical Development, MRL, Merck & Co. Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Peter Orth
- Department of Computational and Structural Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Lynn A Hyde
- Department of Neuroscience, Safety and Laboratory Animal Research, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Brad Smith
- Department of Safety and Laboratory Animal Research MRL, Merck & Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Maria S Michener
- Department of Safety and Laboratory Animal Research MRL, Merck & Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Matthew E Kennedy
- Department of Neuroscience, Safety and Laboratory Animal Research, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Eric M Parker
- Department of Neuroscience, Safety and Laboratory Animal Research, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jared N Cumming
- Department of Discovery Chemistry, MRL, Merck & Co. Inc., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
6
|
Wu XB, Gao Q, Fan JJ, Zhao ZY, Tu XQ, Cao HQ, Yu J. Anionic Chiral Co(III) Complexes Mediated Asymmetric Halocyclization─Synthesis of 5-Halomethyl Pyrazolines and Isoxazolines. Org Lett 2021; 23:9134-9139. [PMID: 34812643 DOI: 10.1021/acs.orglett.1c03456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric synthesis of 5-halomethyl pyrazolines and isoxazolines which bear a tertiary stereocenter by catalytic halocyclization of β,γ-unsaturated hydrazones and ketoximes is described. By using Brønsted acids of anionic chiral Co(III) complexes as catalysts, a variety of chiral 5-halomethyl pyrazolines and isoxazolines were obtained in good yields with high enantioselectivities (up to 99% yield, 97:3 er). Preliminary bioassay results indicated that several isoxazoline derivatives exhibited significant antifungal activities.
Collapse
Affiliation(s)
- Xiao-Bao Wu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China.,School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jun-Jie Fan
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Yu Zhao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China.,School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Prabhakar Kale A, Nikolaienko P, Smirnova K, Rueping M. Intramolecular Electrochemical Oxybromination of Olefins for the Synthesis of Isoxazolines in Batch and Continuous Flow. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ajit Prabhakar Kale
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pavlo Nikolaienko
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kristina Smirnova
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) I King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
8
|
Privat C, Granadino-Roldán JM, Bonet J, Santos Tomas M, Perez JJ, Rubio-Martinez J. Fragment dissolved molecular dynamics: a systematic and efficient method to locate binding sites. Phys Chem Chem Phys 2021; 23:3123-3134. [PMID: 33491698 DOI: 10.1039/d0cp05471b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse computational methods to support fragment-based drug discovery (FBDD) are available in the literature. Despite their demonstrated efficacy in supporting FBDD campaigns, they exhibit some drawbacks such as protein denaturation or ligand aggregation that have not yet been clearly overcome in the framework of biomolecular simulations. In the present work, we discuss a systematic semi-automatic novel computational procedure, designed to surpass these difficulties. The method, named fragment dissolved Molecular Dynamics (fdMD), utilizes simulation boxes of solvated small fragments, adding a repulsive Lennard-Jones potential term to avoid aggregation, which can be easily used to solvate the targets of interest. This method has the advantage of solvating the target with a low number of ligands, thus preventing the denaturation of the target, while simultaneously generating a database of ligand-solvated boxes that can be used in further studies. A number of scripts are made available to analyze the results and obtain the descriptors proposed as a means to trustfully discard spurious binding sites. To test our method, four test cases of different complexity have been solvated with ligand boxes and four molecular dynamics runs of 200 ns length have been run for each system, which have been extended up to 1 μs when needed. The reported results point out that the selected number of replicas are enough to identify the correct binding sites irrespective of the initial structure, even in the case of proteins having several close binding sites for the same ligand. We also propose a set of descriptors to analyze the results, among which the average MMGBSA and the average KDEEP energies have emerged as the most robust ones.
Collapse
Affiliation(s)
- Cristian Privat
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB) and the Institut de Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain.
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071, Jaén, Spain
| | - Jordi Bonet
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB) and the Institut de Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain.
| | - Maria Santos Tomas
- Department of Architecture Technology, Universitat Politecnica de Catalunya, Av. Diagonal 649, 08028 Barcelona, Spain
| | - Juan J Perez
- Deparment of Chemical Engineering, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Jaime Rubio-Martinez
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB) and the Institut de Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Rombouts F, Kusakabe KI, Hsiao CC, Gijsen HJM. Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin Ther Pat 2020; 31:25-52. [PMID: 33006491 DOI: 10.1080/13543776.2021.1832463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2. AREAS COVERED This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities. EXPERT OPINION Despite an increasingly crowded IP situation, significant progress was made using highly complex chemistry in avoiding toxicity liabilities, with BACE1/BACE2 selectivity being the most remarkable achievement. However, clinical trial data suggest on-target toxicity is likely a contributing factor, which implies the only potential future of BACE1 inhibitors lies in careful titration of highly selective compounds in early populations where the amyloid burden is still minimal as prophylactic therapy, or as an affordable oral maintenance therapy following amyloid-clearing therapies.
Collapse
Affiliation(s)
- Frederik Rombouts
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd ., Toyonaka, Osaka, Japan
| | - Chien-Chi Hsiao
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Harrie J M Gijsen
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| |
Collapse
|
10
|
Frohn M, Liu L, Siegmund AC, Qian W, Amegadzie A, Chen N, Tan H, Hickman D, Wood S, Wen PH, Bartberger MD, Whittington DA, Allen JR, Bourbeau MP. The development of a structurally distinct series of BACE1 inhibitors via the (Z)-fluoro-olefin amide bioisosteric replacement. Bioorg Med Chem Lett 2020; 30:127240. [DOI: 10.1016/j.bmcl.2020.127240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/02/2023]
|
11
|
Docking studies suggest the important role of interactions among the catalytic dyad and inhibitors for designing Bace1 specific inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Dabur M, Loureiro JA, Pereira MC. Fluorinated Molecules and Nanotechnology: Future 'Avengers' against the Alzheimer's Disease? Int J Mol Sci 2020; 21:ijms21082989. [PMID: 32340267 PMCID: PMC7216102 DOI: 10.3390/ijms21082989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a serious health concern, affecting millions of people globally, which leads to cognitive impairment, dementia, and inevitable death. There is still no medically accepted treatment for AD. Developing therapeutic treatments for AD is an overwhelming challenge in the medicinal field, as the exact mechanics underlying its devastating symptoms is still not completely understood. Rather than the unknown mechanism of the disease, one of the limiting factors in developing new drugs for AD is the blood–brain barrier (BBB). A combination of nanotechnology with fluorinated molecules is proposed as a promising therapeutic treatment to meet the desired pharmacokinetic/physiochemical properties for crossing the BBB passage. This paper reviews the research conducted on fluorine-containing compounds and fluorinated nanoparticles (NPs) that have been designed and tested for the inhibition of amyloid-beta (Aβ) peptide aggregation. Additionally, this study summarizes fluorinated molecules and NPs as promising agents and further future work is encouraged to be effective for the treatment of AD.
Collapse
|
13
|
Quasdorf KW, Birkholz AB, Bartberger MD, Colyer J, Osgood S, Crossley K, Caille S. Mechanistic Insights into the Racemization of Fused Cyclopropyl Isoxazolines. Org Lett 2020; 22:2113-2117. [PMID: 31859518 DOI: 10.1021/acs.orglett.9b04236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental and computational studies of the unexpected racemization of enantiopure fused cyclopropyl isoxazolines are reported. These studies offer insights into the mechanism of racemization, quantify the position of the transition state on the dipolar-diradical continuum, and establish a relationship between the structure and stability of this class of compounds. Experimental and computed energy barriers for racemization are also presented.
Collapse
Affiliation(s)
- Kyle W Quasdorf
- Departments of Chemical Process Research and Development and Therapeutic Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Adam B Birkholz
- Departments of Chemical Process Research and Development and Therapeutic Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Michael D Bartberger
- 1200 Pharma LLC, 844 East Green Street, Suite 204, Pasadena, California 91101, United States
| | - John Colyer
- Departments of Chemical Process Research and Development and Therapeutic Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Stephen Osgood
- Departments of Chemical Process Research and Development and Therapeutic Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kevin Crossley
- Departments of Chemical Process Research and Development and Therapeutic Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Seb Caille
- Departments of Chemical Process Research and Development and Therapeutic Discovery, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
14
|
Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MRF. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem Biol Drug Des 2019; 95:16-47. [DOI: 10.1111/cbdd.13633] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dhafer S. Zinad
- Applied Science Department University of Technology Baghdad Iraq
| | - Ahmed Mahal
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Guangzhou HC Pharmaceutical Co., Ltd. Guangzhou China
| | - Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Ashish K. Sarangi
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Mohammad Rizki Fadhil Pratama
- Department of Pharmacy Faculty of Health Sciences Muhammadiyah University of Palangkaraya Palangka Raya Indonesia
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Airlangga University Surabaya Indonesia
| |
Collapse
|
15
|
Pettus LH, Bourbeau MP, Bradley J, Bartberger MD, Chen K, Hickman D, Johnson M, Liu Q, Manning JR, Nanez A, Siegmund AC, Wen PH, Whittington DA, Allen JR, Wood S. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. J Med Chem 2019; 63:2263-2281. [DOI: 10.1021/acs.jmedchem.9b01034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Li X, Ding Y, Qian L, Gao Y, Wang X, Yan X, Xu X. General 5-Halomethyl Isoxazoline Synthesis Enabled by Copper-Catalyzed Oxyhalogenation of Alkenes. J Org Chem 2019; 84:12656-12663. [PMID: 31502450 DOI: 10.1021/acs.joc.9b02031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A general and efficient oxyhalogenation of unsaturated ketoximes has been achieved through copper catalysis with diethyl bromomalonate, N-chlorosuccinimide, and N-iodosuccinimide, yielding 5-chloromethyl, 5-bromomethyl, and 5-iodomethyl isoxazolines in good to excellent yields.
Collapse
Affiliation(s)
- Xiaoqing Li
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yu Ding
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Lijie Qian
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yang Gao
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Xinqiang Wang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Xinhuan Yan
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Xiangsheng Xu
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
17
|
New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett 2019; 29:761-777. [DOI: 10.1016/j.bmcl.2018.12.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|