1
|
Laxmikeshav K, Rahman Z, Mahale A, Gurukkala Valapil D, Sharma P, George J, Phanindranath R, Dandekar MP, Kulkarni OP, Nagesh N, Shankaraiah N. Benzimidazole derivatives as tubulin polymerization inhibitors: Design, synthesis and in vitro cytotoxicity studies. Bioorg Med Chem Lett 2023; 96:129494. [PMID: 37797804 DOI: 10.1016/j.bmcl.2023.129494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
A new class of benzimidazole derivatives as tubulin polymerization inhibitors has been designed and synthesized in this study. The in vitro anticancer profile of the developed molecules was reconnoitred on selected human cancer cells. The highest cytotoxicity was illustrated by compounds 7n and 7u with IC50 values ranging from 2.55 to 17.89 µM with specificity toward SK-Mel-28 cells. They displayed 5-fold less cytotoxicity towards normal rat kidney epithelial NRK52E cells, which implies that they are not harmful to normal, healthy cells. The cellular staining procedures like AO/EB, DCFDA, and DAPI were applied to comprehend the inherent mechanism of apoptosis which displayed nuclear and morphological alterations. The Annexin V binding and JC-1 studies were executed to evaluate the extent of apoptosis and the decline in mitochondrial transmembrane potential in SK-Mel-28 cell lines. Compound 7n dose-dependently arrested the G2/M phase of the cell cycle and the target-based outcomes proposed tubulin polymerization inhibition by 7n (IC50 of 5.05±0.13 μM). Computational studies were also conducted on the tubulin protein (PDB ID: 3E22) to investigate the stabilized binding interactions of compounds 7n and 7u with tubulin, respectively.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Joel George
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Onkar P Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
2
|
Albisetti AC, Douglas RL, Welch MD. FAZ assembly in bloodstream form Trypanosoma brucei requires kinesin KIN-E. Mol Biol Cell 2023; 34:ar103. [PMID: 37531263 PMCID: PMC10551704 DOI: 10.1091/mbc.e23-01-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, uses its flagellum for movement, cell division, and signaling. The flagellum is anchored to the cell body membrane via the flagellum attachment zone (FAZ), a complex of proteins, filaments, and microtubules that spans two membranes with elements on both flagellum and cell body sides. How FAZ components are carried into place to form this complex is poorly understood. Here, we show that the trypanosome-specific kinesin KIN-E is required for building the FAZ in bloodstream-form parasites. KIN-E is localized along the flagellum with a concentration at its distal tip. Depletion of KIN-E by RNAi rapidly inhibits flagellum attachment and leads to cell death. A detailed analysis reveals that KIN-E depletion phenotypes include failure in cytokinesis completion, kinetoplast DNA missegregation, and transport vesicle accumulation. Together with previously published results in procyclic form parasites, these data suggest KIN-E plays a critical role in FAZ assembly in T. brucei.
Collapse
Affiliation(s)
- Anna C. Albisetti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Robert L. Douglas
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
3
|
Redka M, Baumgart S, Kupczyk D, Kosmalski T, Studzińska R. Lipophilic Studies and In Silico ADME Profiling of Biologically Active 2-Aminothiazol-4(5 H)-one Derivatives. Int J Mol Sci 2023; 24:12230. [PMID: 37569606 PMCID: PMC10418735 DOI: 10.3390/ijms241512230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudothiohydantoin derivatives have a wide range of biological activities and are widely used in the development of new pharmaceuticals. Lipophilicity is a basic, but very important parameter in the design of potential drugs, as it determines solubility in lipids, nonpolar solvents, and makes it possible to predict the ADME profile. The aim of this study was to evaluate the lipophilicity of 28 pseudothiohydantoin derivatives showing the inhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) using chromatographic methods. Experimentally, lipophilicity was determined by reverse phase thin layer chromatography (RP-TLC) and reverse phase high-performance liquid chromatography (RP-HPLC). In both methods, methanol was used as the organic modifier of the mobile phase. For each 2-aminothiazol-4(5H)-one derivative, a relationship was observed between the structure of the compound and the values of the lipophilicity parameters (log kw, RM0). Experimental lipophilicity values were compared with computer calculated partition coefficient (logP) values. A total of 27 of the 28 tested compounds had a lipophilicity value < 5, which therefore met the condition of Lipinski's rule. In addition, the in silico ADME assay showed favorable absorption, distribution, metabolism, and excretion parameters for most of the pseudothiohydantoin derivatives tested. The study of lipophilicity and the ADME analysis indicate that the tested compounds are good potential drug candidates.
Collapse
Affiliation(s)
- Małgorzata Redka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland;
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland; (M.R.); (S.B.); (T.K.)
| |
Collapse
|
4
|
Baumgart S, Kupczyk D, Archała A, Koszła O, Sołek P, Płaziński W, Płazińska A, Studzińska R. Synthesis of Novel 2-(Cyclopentylamino)thiazol-4(5 H)-one Derivatives with Potential Anticancer, Antioxidant, and 11β-HSD Inhibitory Activities. Int J Mol Sci 2023; 24:ijms24087252. [PMID: 37108415 PMCID: PMC10139140 DOI: 10.3390/ijms24087252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, a series of nine new 2-(cyclopentylamino)thiazol-4(5H)-one derivatives were synthesized, and their anticancer, antioxidant, and 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitory activities were tested. Anticancer activity has been assessed using the MTS (MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay against human colon carcinoma (Caco-2), human pancreatic carcinoma (PANC-1), glioma (U-118 MG), human breast carcinoma (MDA-MB-231), and skin melanoma (SK-MEL-30) cancer cell lines. Cell viability reductions, especially in the case of Caco-2, MDA-MB-231, and SK-MEL-30 lines, were observed for most compounds. In addition, the redox status was investigated and oxidative, but nitrosative stress was not noted at a concentration of 500 µM compounds tested. At the same time, a low level of reduced glutathione was observed in all cell lines when treated with compound 3g (5-(4-bromophenyl)-2-(cyclopentylamino)thiazol-4(5H)-one) that most inhibited tumor cell proliferation. However, the most interesting results were obtained in the study of inhibitory activity towards two 11β-HSD isoforms. Many compounds at a concentration of 10 µM showed significant inhibitory activity against 11β-HSD1 (11β-hydroxysteroid dehydrogenase type 1). The compound 3h (2-(cyclopentylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one) showed the strongest 11β-HSD1 inhibitory effect (IC50 = 0.07 µM) and was more selective than carbenoxolone. Therefore, it was selected as a candidate for further research.
Collapse
Affiliation(s)
- Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Aneta Archała
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| |
Collapse
|
5
|
Bora D, Samir KM, Sharma A, Chilvery S, Bansod S, John SE, Ali Khan M, Godugu C, Shankaraiah N. Exploration of cytotoxic potential and tubulin polymerization inhibition activity of cis-stilbene-1,2,3-triazole congeners. RSC Med Chem 2023; 14:482-490. [PMID: 36970147 PMCID: PMC10034215 DOI: 10.1039/d2md00400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/01/2023] [Indexed: 02/08/2023] Open
Abstract
To scrutinize cis-stilbene based molecules with potential anticancer and tubulin polymerization inhibition activity, a new series of cis-stilbene-1,2,3-triazole congeners was designed and synthesized via a click chemistry protocol. The cytotoxicity of these compounds 9a-j and 10a-j was screened against lung, breast, skin and colorectal cancer cell lines. Based on the results of MTT assay, we further evaluated the selectivity index of the most active compound 9j (IC50 3.25 ± 1.04 μM on HCT-116) by comparing its IC50 value (72.24 ± 1.20 μM) to that of the normal human cell line. Further, to confirm apoptotic cell death, cell morphology and staining studies (AO/EB, DAPI and Annexin V/PI) were carried out. The outcomes of studies showed apoptotic features like change in cell shape, cornering of nuclei, micronuclei formation, fragmented, bright, horseshoe-shaped nuclei, etc. Moreover, active compound 9j displayed G2/M phase cell cycle arrest with significant tubulin polymerization inhibition activity with an IC50 value of 4.51 μM. Additionally, in silico ADMET, molecular docking and molecular dynamic studies of 9j with 3E22 protein proved the binding of the compound at the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Khan Mehtab Samir
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Anamika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Shrilekha Chilvery
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Sapana Bansod
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Mursalim Ali Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Chandraiah Godugu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad - 500 037 India
| |
Collapse
|
6
|
Laxmikeshav K, Sayali M, Devabattula G, Valapil DG, Mahale A, Sharma P, George J, Phanindranath R, Godugu C, Kulkarni OP, Nagesh N, Shankaraiah N. Triazolo-linked benzimidazoles as tubulin polymerization inhibitors and DNA intercalators: Design, synthesis, cytotoxicity, and docking studies. Arch Pharm (Weinheim) 2023; 356:e2200449. [PMID: 36807372 DOI: 10.1002/ardp.202200449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/20/2023]
Abstract
A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 μM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mone Sayali
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Geetanjali Devabattula
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Durgesh G Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Joel George
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Hyderabad, India
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Hyderabad, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Onkar P Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
7
|
Thabit MG, Mostafa AS, Selim KB, Elsayed MAA, Nasr MNA. Insights into modulating the monastrol scaffold: Development of new pyrimidinones as Eg5 inhibitors with anticancer activity. Arch Pharm (Weinheim) 2022; 355:e2200029. [DOI: 10.1002/ardp.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mohamed G. Thabit
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Amany S. Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Khalid B. Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Magda A. A. Elsayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Horus University New Dammeitta Egypt
| | - Magda N. A. Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| |
Collapse
|
8
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
9
|
Zaki YH, Abdelhamid AO, Sayed AR, Mohamed HS. Synthesis of 1,3,4-Thiadiazole Derivatives Using Hydrazonoyl Bromide: Molecular Docking and Computational Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2027791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yasser H. Zaki
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni‑Suef, Egypt
- Department of Chemistry, Faculty of Science and Humanity Studies at Al-Quwayiyah, Shaqra University, Al-Quwayiyah, Saudi Arabia
| | | | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni‑Suef, Egypt
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Hussein S. Mohamed
- Department of Chemistry of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAB), Beni-Suef University, Beni-Suef, Egypt
- Department of Basic Sciences, Higher Technological Institute in Beni-Suef, Beni-Suef, Egypt
| |
Collapse
|
10
|
Shin SY, Jung E, Yeo H, Ahn S, Lee Y, Park J, Kang H, Yeo WS, Koh D, Lim Y. Design, synthesis, and biological activities of 3-((4,6-diphenylpyrimidin-2-ylamino)methylene)-2,3-dihydrochromen-4-ones. Bioorg Chem 2022; 120:105634. [PMID: 35114524 DOI: 10.1016/j.bioorg.2022.105634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
Abstract
Novel (Z)-3-((4,6-diphenylpyrimidin-2-ylamino)methylene)-2,3-dihydrochromen-4-one derivatives were designed and synthesized to find chemotherapeutic agents. Derivative 9 was selected based on its clonogenicity against cancer cells and synthetic yield for further biological experiments. It showed decreases in aurora kinase A, B, and C phosphorylation from western blot analysis. Derivative 9 upregulated the expression of G1 cell cycle inhibitory proteins including p21 and p27, and G1 progressive cyclin D1, and downregulated G1-to-S progressive cyclins, resulting in cell cycle arrest at the G1/S boundary. It stimulated the cleavage of caspase-9, -3, -7, and poly (ADP-ribose) polymerase, resulting in triggering apoptosis through a caspase-dependent pathway. In addition, derivative 9 inhibited in vivo tumor growth in a syngeneic tumor implantation mouse model. The findings of this study suggest that derivative 9 can be considered as a lead compound for chemotherapeutic agents.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunjin Yeo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyun Park
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunook Kang
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Woon-Seok Yeo
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Chamariya R, Suvarna V. Role of KSP inhibitors as anti-cancer therapeutics: an update. Anticancer Agents Med Chem 2022; 22:2517-2538. [PMID: 35043768 DOI: 10.2174/1871520622666220119093105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Regardless of the growing discovery of anticancer treatments, targeting cancer-specific pathways, cytotoxic therapy still maintained its abundant clinical significance based on the fact that tumours harbour a greater population of actively dividing cells than normal tissues. Conventional anti-mitotic agents or microtubule poisons acting on the major mitotic spindle protein tubulin have been effectively used in clinical settings for cancer chemotherapy over the last three decades. However, use of these drugs is associated with limited clinical utility due to serious side effects such as debilitating and dose-limiting peripheral neuropathy, myelosuppression, drug resistance and allergic reactions. Therefore, research initiatives have been undertaken to develop novel microtubule motor proteins inhibitors that can potentially circumvent the limitations associated with conventional microtubule poisons. Kinesin spindle proteins (KSP) belonging to the kinesin-5 family play a crucial role during mitosis and unregulated cell proliferation. Several evidences from preclinical studies and different phases of clinical trials have presented kinesin spindle protein as a promising target for cancer therapeutics. kinesin spindle protein inhibitors causing mitosis disruption without interfering with microtubule dynamics in non-dividing cells offer a potential therapeutic alternative for the management of several major cancer types and are devoid of side effects associated with classical anti-mitotic drugs. This review summarizes recent data highlighting progress in the discovery of targeted KSP inhibitors and presents the development of scaffolds, structure-activity relationships, and outcomes of biological, and enzyme inhibition studies. We reviewed the recent literature reports published over last decade, using various electronic database searches such as PubMed, Embase, Medline, Web of Science, and Google Scholar. Clinical trial data till 2021 was retrieved from ClinicalTrial.gov. Major chemical classes developed as selective KSP inhibitors include dihydropyrimidines, β-carbolines, carbazoles, benzimidazoles, fused aryl derivatives, pyrimidines, fused pyrimidines, quinazolines, quinolones, thiadiazolines, spiropyran and azobenzenes. Drugs such as filanesib, litronesib, ispinesib have entered clinical trials, the most advanced phase explored being Phase II. KSP inhibitors have exhibited promising results; however, continued exploration is greatly required to establish the clinical potential of KSP inhibitors.
Collapse
Affiliation(s)
- Rinkal Chamariya
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai - 400056, Maharashtra, India
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai - 400056, Maharashtra, India
| |
Collapse
|
12
|
Karunanidhi S, Chandrasekaran B, Karpoormath R, Patel HM, Kayamba F, Merugu SR, Kumar V, Dhawan S, Kushwaha B, Mahlalela MC. Novel thiomorpholine tethered isatin hydrazones as potential inhibitors of resistant Mycobacterium tuberculosis. Bioorg Chem 2021; 115:105133. [PMID: 34329993 DOI: 10.1016/j.bioorg.2021.105133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022]
Abstract
Novel chemotherapeutic agents against multidrug resistant-tuberculosis (MDR-TB) are urgently needed at this juncture to save the life of TB-infected patients. In this work, we have synthesized and characterized novel isatin hydrazones 4(a-o) and their thiomorpholine tethered analogues 5(a-o). All the synthesized compounds were initially screened for their anti-mycobacterial activity against the H37Rv strain of Mycobacterium tuberculosis (MTB) under level-I testing. Remarkably, five compounds 4f, 4h, 4n, 5f and 5m (IC50 = 1.9 µM to 9.8 µM) were found to be most active, with 4f (IC50 = 1.9 µM) indicating highest inhibition of H37Rv. These compounds were further evaluated at level-II testing against the five drug-resistant strains such as isoniazid-resistant strains (INH-R1 and INH-R2), rifampicin-resistant strains (RIF-R1 and RIF-R2) and fluoroquinolone-resistant strain (FQ-R1) of MTB. Interestingly, 4f and 5f emerged as the most potent compounds with IC50 of 3.6 µM and 1.9 µM against RIF-R1 MTB strain, followed by INH-R1 MTB strain with IC50 of 3.5 µM and 3.4 µM, respectively. Against FQ-R1 MTB strain, the lead compounds 4f and 5f displayed excellent inhibition at IC50 5.9 µM and 4.9 µM, respectively indicating broad-spectrum of activity. Further, molecular docking, ADME pharmacokinetic and molecular dynamics simulations of the compounds were performed against the DNA gyrase B and obtained encouraging results.
Collapse
Affiliation(s)
- Sivanandhan Karunanidhi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa.
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa; R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule) 425405, Maharashtra, India
| | - Francis Kayamba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Srinivas Reddy Merugu
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| |
Collapse
|
13
|
Sagha M, Mousaei F, Salahi M, Razzaghi-Asl N. Synthesis of new 2-aminothiazolyl/benzothiazolyl-based 3,4-dihydropyrimidinones and evaluation of their effects on adenocarcinoma gastric cell migration. Mol Divers 2021; 26:1039-1051. [PMID: 34050874 DOI: 10.1007/s11030-021-10229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
Gastric cancer is one of the malignant tumors of the gastrointestinal tract that, despite its decrease in recent years, is still the fourth most common cancer and the second leading cause of cancer-related death. Various strategies including chemotherapy are used to keep cancer cells from spreading and induce apoptotic death in them. Recent studies have shown that dihydropyrimidinones (DHPMs) are privileged structures in medicinal chemistry due to their pharmacological effects. A number of new 2-aminothiazolyl/benzothiazolyl derivatives of 3,4-DHPMs (3-8) were synthesized and structurally identified, and then their effects on the migration behavior of human AGS cells (gastric cancer cells) were investigated. Molecular docking and molecular dynamics (MD) simulations were applied to explore binding potential and realistic binding model of the assessed derivatives through identification of key amino acid residues within L5/α2/α3 allosteric site of kinesin 5 (Eg5) as a validated microtubule-dependent target for monastrol as a privileged DHPM derivative.
Collapse
Affiliation(s)
- Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Mousaei
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Salahi
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran.
| |
Collapse
|
14
|
Ngoc Toan V, Dinh Thanh N, Minh Tri N. 1,3,4-Thiadiazoline−coumarin hybrid compounds containing D-glucose/D-galactose moieties: Synthesis and evaluation of their antiproliferative activity. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
15
|
Tokala R, Sana S, Lakshmi UJ, Sankarana P, Sigalapalli DK, Gadewal N, Kode J, Shankaraiah N. Design and synthesis of thiadiazolo-carboxamide bridged β-carboline-indole hybrids: DNA intercalative topo-IIα inhibition with promising antiproliferative activity. Bioorg Chem 2020; 105:104357. [PMID: 33091673 PMCID: PMC7543778 DOI: 10.1016/j.bioorg.2020.104357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
The conjoining of salient pharmacophoric properties directing the development of prominent cytotoxic agents was executed by constructing thiadiazolo-carboxamide bridged β-carboline-indole hybrids. On the evaluation of in vitro cytotoxic potential, 12c exhibited prodigious cytotoxicity among the synthesized new molecules 12a-k, with an IC50 < 5 μM in all the tested cancer cell lines (A549, MDA-MB-231, BT-474, HCT-116, THP-1) and the best cytotoxic potential was expressed in lung cancer cell line (A549) with an IC50 value of 2.82 ± 0.10 μM. Besides, another compound 12a also displayed impressive cytotoxicity against A549 cell line (IC50: 3.00 ± 1.40 μM). Further target-based assay of these two compounds 12c and 12a revealed their potential as DNA intercalative topoisomerase-IIα inhibitors. Additionally, the antiproliferative activity of compound 12c was measured in A549 cells by traditional apoptosis assays revealing the nuclear, morphological alterations, and depolarization of membrane potential in mitochondria and externalization of phosphatidylserine in a concentration-dependent manner. Cell cycle analysis unveiled the G0/G1 phase inhibition and wound healing assay inferred the inhibition of in vitro cell migration by compound 12c in lung cancer cells. Remarkably, the safety profile of compound 12c was disclosed by screening against normal human lung epithelial cell line (BEAS-2B: IC50: 71.2 ± 7.95 μM) with a selectivity index range of 14.9-25.26. Moreover, Molecular modeling studies affirm the intercalative binding of compound 12c and 12a in the active pocket of topo-IIα. Furthermore, in silico prediction of physico-chemical parameters divulged the propitious drug-like properties of the synthesized derivatives.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Uppu Jaya Lakshmi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Prasanthi Sankarana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi-Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
16
|
Muthumanickam S, Indhumathi T, Boomi P, Balajee R, Jeyakanthan J, Anand K, Ravikumar S, Kumar P, Sudha A, Jiang Z. In silico approach of naringin as potent phosphatase and tensin homolog (PTEN) protein agonist against prostate cancer. J Biomol Struct Dyn 2020; 40:1629-1638. [PMID: 33034258 DOI: 10.1080/07391102.2020.1830855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PC) is one of the major impediments affecting men, which leads approximately 31,620 deaths in both developing and developed countries. Although some chemotherapy drugs have been reported for prostate cancer, they are not effective due to the lack of safety, efficacy and low selectivity. Hence, the novel alternative anticancer agents with remarkable effect are highly appreciable. Natural plants contain several bio-active compounds which have been traditionally used for the various medical treatments. Particularly, naringin is a natural bio-active compound commonly found in the citrus fruits, which have shown numerous biological activities. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene, which activates both lipid phosphates and protein phosphates. The PTEN gene is negative regulator of PI3K/AKT/mTOR pathways, since, this signaling pathway play an essential role in the cell survival, proliferation and migration. In the present in silico investigation, structure based virtual screening, molecular docking, molecular dynamics simulation and Adsorption, Distribution, Metabolism, Excretion (ADME) prediction were employed to determine the binding affinity, stability and drug likeness properties of top ranked screened compounds and naringin, respectively. The results revealed that the complex has good molecular interactions, binding stability (peak between 0.3 and 0.4 nm) and no violations in the Lipinski Rule of 5 in naringin, but the screened compounds violated the drug likeness properties. From the in silico analyses, it is identified that naringin compound might assist in the development of novel therapeutic candidate against prostate cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sundaram Ravikumar
- Department of Biomedical Science, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Arumugam Sudha
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Karaikudi, Tamil Nadu, India
| | - Zhihui Jiang
- School of life Science, Department of Biotechnology, Anyang Institute of Technology, Henan, China
| |
Collapse
|
17
|
Almandil NB, Taha M, Rahim F, Wadood A, Imran S, Alqahtani MA, Bamarouf YA, Ibrahim M, Mosaddik A, Gollapalli M. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg Chem 2019; 85:109-116. [DOI: 10.1016/j.bioorg.2018.12.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/23/2023]
|