1
|
Kalamatianou A, Ludwig C, Zhong S, Cariou K, Gasser G. Synthetic strategies for the incorporation of metallocenes into anti-infective scaffolds. Chem Soc Rev 2025; 54:3930-3961. [PMID: 40091793 DOI: 10.1039/d4cs01216j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
With the rates of infectious diseases and (pan)drug-resistant pathogens constantly increasing, there is a pressing need for the development of new drug candidates. To fight this global health crisis, new medicines should propose improved or novel modes of action. A successful strategy to fight microbial resistance is the incorporation of metallocenes into drug scaffolds. This review aims at encouraging the scientific community to follow this approach by giving an overview of all published synthetic strategies either for the derivatization of anti-infective drug scaffolds with metallocenes or for the de novo synthesis of original metallocenyl anti-infectives. This should facilitate future research as published articles are classified depending on the reaction type that is employed for the incorporation of the metallocenes, namely addition-elimination, condensation, "click" chemistry, cross-coupling, nucleophilic substitution and other methods. Overall, this review exhibits the impressive but somewhat unexploited potential of anti-infective metallocenyl compounds to treat infectious diseases.
Collapse
Affiliation(s)
- Apollonia Kalamatianou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Corentin Ludwig
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Shuai Zhong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
2
|
Chen LY, Chaudhury U, Wei S, Li J. Expanding the Repertoire of Large Scaffolds with Syn and Anti Macrocyclic Metacyclophanes. J Org Chem 2025; 90:374-384. [PMID: 39690104 PMCID: PMC12053573 DOI: 10.1021/acs.joc.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding how changes in structure translate to changes in molecular shape is key to catalyst optimization and molecular design in medicinal chemistry and materials. One key contributor to the molecular shape is the relative orientation of substituents on a scaffold. Macrocyclic metacyclophanes display their two arenes in a parallel or antiparallel fashion, resulting in anti or syn conformations that lead to disparate relative orientations of the aryl substituents. This work reports the synthesis of new 14- and 16-membered metacyclophanes and the elucidation of their anti/syn preferences by 1H NMR and computational conformational analysis. Most metacyclophanes studied herein display a strong anti or syn preference and, thus, have well-defined substituent orientations. We propose that anti/syn conformational preferences arise from the minimization of torsional strain along the backbone of the macrocycle, which leads to the prediction that metacyclophanes with remote aryl substituents will adopt the same conformation as their unsubstituted counterparts. Exit vector analysis also reveals that anti-metacyclophanes project their substituents into regions in three-dimensional space that are not accessed by other common large scaffolds, e.g., [2.2]paracyclophanes and ferrocenes. This work also demonstrates how ring size and functional groups, two parameters commonly optimized in macrocycle design, can be used to tune molecular shape.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Udayan Chaudhury
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Shengkai Wei
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Junqi Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Rauf U, Shabir G, Bukhari S, Albericio F, Saeed A. Contemporary Developments in Ferrocene Chemistry: Physical, Chemical, Biological and Industrial Aspects. Molecules 2023; 28:5765. [PMID: 37570735 PMCID: PMC10420780 DOI: 10.3390/molecules28155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.
Collapse
Affiliation(s)
- Umair Rauf
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Saba Bukhari
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| |
Collapse
|
6
|
Ramdas V, Talwar R, Banerjee M, Joshi AA, Das AK, Walke DS, Borhade P, Dhayagude U, Loriya R, Gote G, Bommakanti A, Sivaram A, Agarwal G, Goswami A, Nigade P, Mehta M, Patil V, Modi D, Kumar H, Mallurwar S, Dash A, Modi F, Kuldharan S, Srivastava P, Singh M, Narasimham L, Gundu J, Sharma S, Kamboj RK, Palle VP. Discovery and Characterization of Potent Pan-Genotypic HCV NS5A Inhibitors Containing Novel Tricyclic Central Core Leading to Clinical Candidate. J Med Chem 2019; 62:10563-10582. [PMID: 31710479 DOI: 10.1021/acs.jmedchem.9b01562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of a novel class of potent pan-genotypic NS5A inhibitors with good pharmacokinetic profile suitable for potential use in treating HCV infections is disclosed here. The present series of compounds are with less complex tricyclic central core, identified through a systematic SAR study carried out on biphenyl moiety. The SAR outcome has confirmed the requirement of near planar and linear conformation of the molecule to achieve the best pan-genotypic activity. In addition, SAR with substituted imidazoles on improvement of antiviral activity is disclosed. The newly identified compounds 12, 16, 19-21 have shown desirable pharmacokinetic profiles with a favorable uptake of compounds in liver and maintained a significant concentration for up to 8 h in the liver. In addition, compounds 20 and 21 have shown superior pan-genotypic anti-HCV activity compared to ledipasvir and daclatasvir. Additional characterization and preliminary safety assessment resulted in the identification of compound 20 as a potential clinical candidate.
Collapse
Affiliation(s)
- Vidya Ramdas
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Rashmi Talwar
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Moloy Banerjee
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Advait Arun Joshi
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Amit Kumar Das
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Deepak Sahebrao Walke
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Prashant Borhade
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Usha Dhayagude
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Rajesh Loriya
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Ganesh Gote
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Apparao Bommakanti
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Aruna Sivaram
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Gautam Agarwal
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Arnab Goswami
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Prashant Nigade
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Maneesh Mehta
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Vinod Patil
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Dipak Modi
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Hemant Kumar
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sadanand Mallurwar
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Amruta Dash
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Falguni Modi
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sandip Kuldharan
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Pratima Srivastava
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Minakshi Singh
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Lakshmi Narasimham
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Jayasagar Gundu
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Sharad Sharma
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| | - Venkata P Palle
- Novel Drug Discovery & Development , Lupin Ltd. , Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi , Pune 412115 , India
| |
Collapse
|