1
|
Kudo G, Hirao T, Yoshino R, Shigeta Y, Hirokawa T. Site Identification and Next Choice Protocol for Hit-to-Lead Optimization. J Chem Inf Model 2024; 64:4475-4484. [PMID: 38768949 PMCID: PMC11167593 DOI: 10.1021/acs.jcim.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Time efficiency and cost savings are major challenges in drug discovery and development. In this process, the hit-to-lead stage is expected to improve efficiency because it primarily exploits the trial-and-error approach of medicinal chemists. This study proposes a site identification and next choice (SINCHO) protocol to improve the hit-to-lead efficiency. This protocol selects an anchor atom and growth site pair, which is desirable for a hit-to-lead strategy starting from a 3D complex structure. We developed and fine-tuned the protocol using a training data set and assessed it using a test data set of the preceding hit-to-lead strategy. The protocol was tested for experimentally determined structures and molecular dynamics (MD) ensembles. The protocol had a high prediction accuracy for applying MD ensembles, owing to the consideration of protein flexibility. The SINCHO protocol enables medicinal chemists to visualize and modify functional groups in a hit-to-lead manner.
Collapse
Affiliation(s)
- Genki Kudo
- Physics
Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takumi Hirao
- Doctoral
Program in Medical Sciences, Graduate School of Comprehensive Human
Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryunosuke Yoshino
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takatsugu Hirokawa
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Rao M, McDuffie E, Sachs C. Artificial Intelligence/Machine Learning-Driven Small Molecule Repurposing via Off-Target Prediction and Transcriptomics. TOXICS 2023; 11:875. [PMID: 37888725 PMCID: PMC10611213 DOI: 10.3390/toxics11100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
The process of discovering small molecule drugs involves screening numerous compounds and optimizing the most promising ones, both in vitro and in vivo. However, approximately 90% of these optimized candidates fail during trials due to unexpected toxicity or insufficient efficacy. Current concepts with respect to drug-protein interactions suggest that each small molecule interacts with an average of 6-11 targets. This implies that approved drugs and even discontinued compounds could be repurposed by leveraging their interactions with unintended targets. Therefore, we developed a computational repurposing framework for small molecules, which combines artificial intelligence/machine learning (AI/ML)-based and chemical similarity-based target prediction methods with cross-species transcriptomics information. This repurposing methodology incorporates eight distinct target prediction methods, including three machine learning methods. By using multiple orthogonal methods for a "dataset" composed of 2766 FDA-approved drugs targeting multiple therapeutic target classes, we identified 27,371 off-target interactions involving 2013 protein targets (i.e., an average of around 10 interactions per drug). Relative to the drugs in the dataset, we identified 150,620 structurally similar compounds. The highest number of predicted interactions were for drugs targeting G protein-coupled receptors (GPCRs), enzymes, and kinases with 10,648, 4081, and 3678 interactions, respectively. Notably, 17,283 (63%) of the off-target interactions have been confirmed in vitro. Approximately 4000 interactions had an IC50 of <100 nM for 1105 FDA-approved drugs and 1661 interactions had an IC50 of <10 nM for 696 FDA-approved drugs. Together, the confirmation of numerous predicted interactions and the exploration of tissue-specific expression patterns in human and animal tissues offer insights into potential drug repurposing for new therapeutic applications.
Collapse
Affiliation(s)
- Mohan Rao
- Neurocrine Biosciences, Inc., Nonclinical Toxicology, San Diego, CA 92130, USA; (E.M.); (C.S.)
| | | | | |
Collapse
|
3
|
Dragovich PS, Haap W, Mulvihill MM, Plancher JM, Stepan AF. Small-Molecule Lead-Finding Trends across the Roche and Genentech Research Organizations. J Med Chem 2022; 65:3606-3615. [PMID: 35138850 DOI: 10.1021/acs.jmedchem.1c02106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The origin of small-molecule leads that were pursued across the independent research organizations Roche and Genentech from 2009 to 2020 is described. The identified chemical series are derived from a variety of lead-finding methods, which include public information, high-throughput screening (both full file and focused), fragment-based design, DNA-encoded library technology, use of legacy internal data, in-licensing, and de novo design (often structure-based). The translation of the lead series into in vivo tool compounds and development candidates is discussed as are the associated biological target classes and corresponding therapeutic areas. These analyses identify important trends regarding the various lead-finding approaches, which will likely impact their future application in the Roche and Genentech research groups. They also highlight commonalities and differences across the two independent research organizations. Several caveats associated with the employed data collection and analysis methodologies are included to enhance the interpretation of the presented information.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Melinda M Mulvihill
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jean-Marc Plancher
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Antonia F Stepan
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| |
Collapse
|
4
|
Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 2021; 5:522-545. [PMID: 37117588 DOI: 10.1038/s41570-021-00300-6] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C-H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C-H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C-H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C-H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest.
Collapse
|
5
|
Leite ML, de Loiola Costa LS, Cunha VA, Kreniski V, de Oliveira Braga Filho M, da Cunha NB, Costa FF. Artificial intelligence and the future of life sciences. Drug Discov Today 2021; 26:2515-2526. [PMID: 34245910 DOI: 10.1016/j.drudis.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
Over the past few decades, the number of health and 'omics-related data' generated and stored has grown exponentially. Patient information can be collected in real time and explored using various artificial intelligence (AI) tools in clinical trials; mobile devices can also be used to improve aspects of both the diagnosis and treatment of diseases. In addition, AI can be used in the development of new drugs or for drug repurposing, in faster diagnosis and more efficient treatment for various diseases, as well as to identify data-driven hypotheses for scientists. In this review, we discuss how AI is starting to revolutionize the life sciences sector.
Collapse
Affiliation(s)
- Michel L Leite
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília SGAN 916 Modulo B, Bloco C, 70.790-160, Brasília, DF, Brazil; Department of Molecular Biology, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Block K, 70.790-900, Brasilia, Federal District, Brazil
| | - Lorena S de Loiola Costa
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília SGAN 916 Modulo B, Bloco C, 70.790-160, Brasília, DF, Brazil
| | - Victor A Cunha
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília SGAN 916 Modulo B, Bloco C, 70.790-160, Brasília, DF, Brazil
| | - Victor Kreniski
- Apple Developer Academy, Universidade Católica de Brasília, Brasilia, Brazil
| | | | - Nicolau B da Cunha
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília SGAN 916 Modulo B, Bloco C, 70.790-160, Brasília, DF, Brazil
| | - Fabricio F Costa
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília SGAN 916 Modulo B, Bloco C, 70.790-160, Brasília, DF, Brazil; Apple Developer Academy, Universidade Católica de Brasília, Brasilia, Brazil; Cancer Biology and Epigenomics Program, Ann & Robert H Lurie Children's Hospital of Chicago Research Center and Northwestern University's Feinberg School of Medicine, 2430 N. Halsted St, Box 220, Chicago, IL 60614, USA; MATTER Chicago, 222 W. Merchandise Mart Plaza, Suite 12th Floor, Chicago, IL 60654, USA; Genomic Enterprise, San Diego, CA 92008, USA; Genomic Enterprise, New York, NY 11581, USA.
| |
Collapse
|
6
|
|
7
|
Shi W, Han H, Zou J, Zhang Y, Li H, Zhou H, Cui G. Identification of dihydrotanshinone I as an ERp57 inhibitor with anti-breast cancer properties via the UPR pathway. Biochem Pharmacol 2021; 190:114637. [PMID: 34062127 DOI: 10.1016/j.bcp.2021.114637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Salvia miltiorrhiza (Danshen) is a well-known traditional Chinese medicine for treating various diseases, such as breast cancer. However, knowledge regarding its mechanisms is scant. Herein, the active ingredient dihydrotanshinone I (DHT) in Salvia miltiorrhiza extract (SME), which binds ERp57 was identified and verified by an enzymatic solid-phase method combined with LC-MS/MS. DHT potentially inhibited ERp57 activity and suppressed ERp57 expression at both the RNA and protein levels. Molecular docking simulation indicated that DHT could form a hydrogen bond with catalytic site of ERp57. Moreover, ERp57 overexpression decreased DHT-induced cytotoxicity in MDA-MB-231 cells. Thereafter, the signaling pathway downstream of ERp57 was investigated by Western blot analysis. The mechanistic study revealed that DHT treatment resulted in activation of endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and cellular apoptosis. In conclusion, our data implied that DHT targeted ERp57 for inhibition and induced ER stress and UPR activation, which in turn triggered breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Han Han
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Jia Zou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
8
|
Ji Y, Dai D, Luo H, Shen S, Fan J, Wang Z, Chen M, Wan J, Li J, Ma H, Liu G. C-S Coupling of DNA-Conjugated Aryl Iodides for DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2021; 32:685-689. [PMID: 33720689 DOI: 10.1021/acs.bioconjchem.1c00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioethers have been widely found in biologically active compounds, including pharmaceuticals. In this report, a highly efficient approach to on-DNA construction of thioethers via Cu-promoted Ullmann cross-coupling between DNA-conjugated aryl iodides and thiols is developed. This methodology was demonstrated with medium to high yields, without obvious DNA damage. This reported reaction has strong potential for application in DNA-encoded chemical library synthesis.
Collapse
Affiliation(s)
- Yue Ji
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Dongliang Dai
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Huadong Luo
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Simin Shen
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jing Fan
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zhao Wang
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Min Chen
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Huiyong Ma
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
9
|
Brom T, Reddavide FV, Heiden S, Thompson M, Zhang Y. Influence of the geometry of fluorescently labelled DNA constructs on fluorescence anisotropy assay. Biochem Biophys Res Commun 2020; 533:230-234. [PMID: 32376008 DOI: 10.1016/j.bbrc.2020.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 11/15/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are powerful tools for modern drug discovery. A DECL is a pooled mixture of small molecule compounds, each of which is tagged with a unique DNA sequence which functions as a barcode. After incubation with a drug target and washing to remove non-binders, the bound molecules are eluted and submitted for DNA sequencing to determine which molecules are binding the target. While the DECL technology itself is ultra-high throughput, the following re-synthesis of identified compounds for orthogonal validation experiments remains the bottleneck. Using existing DNA-small molecule conjugates directly for affinity measurements, as opposed to complete compound resynthesis, could accelerate the discovery process. To this end, we have tested various geometries of fluorescently-labelled DNA constructs for fluorescence anisotropy (FA) experiments. Minimizing the distance between the fluorescent moiety and ligand can maximize the correlation between ligand-protein interaction and corresponding change in fluorophore rotational freedom, thus leading to larger, easier to interpret changes in FA values. However, close proximity can also cause artifacts due to potentially promiscuous interactions between fluorophore and protein. By balancing these two opposite effects, we have identified applicable fluorescently labelled DNA constructs displaying either a single ligand or pairs of fragments for affinity measurement using a FA assay.
Collapse
Affiliation(s)
- Tomas Brom
- LifeB, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; DyNAbind GmbH, Dresden, Germany
| | | | | | | | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Colodette NM, Franco LS, Maia RC, Fokoue HH, Sant'Anna CMR, Barreiro EJ. Novel phosphatidylinositol 4-kinases III beta (PI4KIIIβ) inhibitors discovered by virtual screening using free energy models. J Comput Aided Mol Des 2020; 34:1091-1103. [PMID: 32601839 PMCID: PMC7324290 DOI: 10.1007/s10822-020-00327-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Herein, the LASSBio Chemical Library is presented as a valuable source of compounds for screening to identify hits suitable for subsequent hit-to-lead optimization stages. A feature of the LASSBio Chemical Library worth highlighting is the fact that it is a smart library designed by medicinal chemists with pharmacological activity as the main priority. The great majority of the compounds part of this library have shown in vivo activity in animal models, which is an indication that they possess overall favorable bioavailability properties and, hence, adequate pharmacokinetic profiles. This, in turn, is supported by the fact that approximately 85% of the compounds are compliant with Lipinski's rule of five and ca. 95% are compliant with Veber's rules, two important guidelines for oral bioavailability. In this work it is presented a virtual screening methodology combining a pharmacophore-based model and an empirical Gibbs free energy-based model for the ligand-protein interaction to explore the LASSBio Chemical Library as a source of new hits for the inhibition of the phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) enzyme, which is related to the development of viral infections (including enteroviruses, SARS coronavirus, and hepatitis C virus), cancers and neurological diseases. The approach resulted in the identification of two hits, LASSBio-1799 (7) and LASSBio-1814 (10), which inhibited the target enzyme with IC50 values of 3.66 μM and IC50 and 6.09 μM, respectively. This study also enabled the determination of the structural requirements for interactions with the active site of PI4KIIIβ, demonstrating the importance of both acceptor and donor hydrogen bonding groups for forming interactions with binding site residues Val598 and Lys549.
Collapse
Affiliation(s)
- Natalie M Colodette
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lucas S Franco
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Rodolfo C Maia
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil
| | - Harold H Fokoue
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil
| | - Carlos Mauricio R Sant'Anna
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Departamento de Química Fundamental, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rodovia BR465, km 7, Seropédica, RJ, ZIP 23897-000, Brazil
| | - Eliezer J Barreiro
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil. .,Programa de Pesquisas em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Yan XC, Sanders JM, Gao YD, Tudor M, Haidle AM, Klein DJ, Converso A, Lesburg CA, Zang Y, Wood HB. Augmenting Hit Identification by Virtual Screening Techniques in Small Molecule Drug Discovery. J Chem Inf Model 2020; 60:4144-4152. [PMID: 32309939 DOI: 10.1021/acs.jcim.0c00113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two orthogonal approaches for hit identification in drug discovery are large-scale in vitro and in silico screening. In recent years, due to the emergence of new targets and a rapid increase in the size of the readily synthesizable chemical space, there is a growing emphasis on the integration of the two techniques to improve the hit finding efficiency. Here, we highlight three examples of drug discovery projects at Merck & Co., Inc., Kenilworth, NJ, USA in which different virtual screening (VS) techniques, each specifically tailored to leverage knowledge available for the target, were utilized to augment the selection of high-quality chemical matter for in vitro assays and to enhance the diversity and tractability of hits. Central to success is a fully integrated workflow combining in silico and experimental expertise at every stage of the hit identification process. We advocate that workflows encompassing VS as part of an integrated hit finding plan should be widely adopted to accelerate hit identification and foster cross-functional collaborations in modern drug discovery.
Collapse
|
12
|
Song M, Hwang GT. DNA-Encoded Library Screening as Core Platform Technology in Drug Discovery: Its Synthetic Method Development and Applications in DEL Synthesis. J Med Chem 2020; 63:6578-6599. [PMID: 32039601 DOI: 10.1021/acs.jmedchem.9b01782] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA-encoded library technology (DELT) was introduced to our medicinal chemistry society more than 20 years ago. The application of DELT in the development of clinical candidates has been actively reported in the literature recently. A few representative examples include RIP1K inhibitors for inflammatory diseases and sEH inhibitors for endothelial dysfunction or abnormal tissue repair, among many others. Here, the authors would like to recall the recent developments in on-DNA synthetic methodologies for DEL construction and to analyze recent examples in the literature of DELT-based drug development efforts pursued in both the academic and industrial sectors. With this perspective, we hope to provide a useful summary of recent DELT-based drug discovery research and to discuss the future scope of DELT in medicinal chemistry.
Collapse
Affiliation(s)
- Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
13
|
Wellaway CR, Amans D, Bamborough P, Barnett H, Bit RA, Brown JA, Carlson NR, Chung CW, Cooper AWJ, Craggs PD, Davis RP, Dean TW, Evans JP, Gordon L, Harada IL, Hirst DJ, Humphreys PG, Jones KL, Lewis AJ, Lindon MJ, Lugo D, Mahmood M, McCleary S, Medeiros P, Mitchell DJ, O’Sullivan M, Le Gall A, Patel VK, Patten C, Poole DL, Shah RR, Smith JE, Stafford KAJ, Thomas PJ, Vimal M, Wall ID, Watson RJ, Wellaway N, Yao G, Prinjha RK. Discovery of a Bromodomain and Extraterminal Inhibitor with a Low Predicted Human Dose through Synergistic Use of Encoded Library Technology and Fragment Screening. J Med Chem 2020; 63:714-746. [DOI: 10.1021/acs.jmedchem.9b01670] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Dominique Amans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather Barnett
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rino A. Bit
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jack A. Brown
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Neil R. Carlson
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Peter D. Craggs
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert P. Davis
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Tony W. Dean
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - John P. Evans
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie Gordon
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - David J. Hirst
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | | | | | - Dave Lugo
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Mahnoor Mahmood
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Scott McCleary
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Patricia Medeiros
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | | | | | - Armelle Le Gall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Chris Patten
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren L. Poole
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R. Shah
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jane E. Smith
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Mythily Vimal
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Gang Yao
- GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Rab K. Prinjha
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
14
|
Uri A, Nonga OE. What is the current value of fluorescence polarization assays in small molecule screening? Expert Opin Drug Discov 2019; 15:131-133. [DOI: 10.1080/17460441.2020.1702966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
15
|
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS, Zentgraf M, Hill JE, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C, Schneider G. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2019. [DOI: 78495111110.1038/s41573-019-0050-3' target='_blank'>'"<>78495111110.1038/s41573-019-0050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1038/s41573-019-0050-3','', '10.1016/j.bmcl.2018.12.001')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
78495111110.1038/s41573-019-0050-3" />
|
16
|
Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2019; 19:353-364. [PMID: 31801986 DOI: 10.1038/s41573-019-0050-3] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
|
17
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
18
|
Kunig VBK, Ehrt C, Dömling A, Brunschweiger A. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Org Lett 2019; 21:7238-7243. [PMID: 31464126 DOI: 10.1021/acs.orglett.9b02448] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isocyanide multicomponent reactions play a prominent role in drug discovery. This chemistry has hardly been investigated for compatibility with DNA-encoded combinatorial synthesis. The Ugi, Ugi-azide, and Groebke-Blackburn-Bienaymé reactions are well-tolerated by DNA on the solid phase and show a broad scope. However, an oxadiazole-forming variant of the Ugi reaction caused DNA depurination, requiring a more stable hexathymidine DNA for encoded library synthesis. Cheminformatic analysis revealed that isocyanide multicomponent-reaction-based encoded libraries cover a diverse chemical space.
Collapse
Affiliation(s)
- Verena B K Kunig
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - Christiane Ehrt
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - Alexander Dömling
- Drug Design , University of Groningen , Deusinglaan 1 , 7313 AV Groningen , The Netherlands
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| |
Collapse
|
19
|
Bunally SB, Luscombe CN, Young RJ. Using Physicochemical Measurements to Influence Better Compound Design. SLAS DISCOVERY 2019; 24:791-801. [PMID: 31429385 DOI: 10.1177/2472555219859845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the past decade, the physicochemical quality of molecules under investigation at all stages of the drug discovery process has come under particular scrutiny. The issues associated with excessive lipophilicity and poor solubility in particular are many and varied, ranging from poor outcomes in screening campaigns to promiscuity, limited and/or poorly predictable pharmacokinetic exposure, and, ultimately, greater chances of clinical failure. In this review, contemporary methods to secure key measurements are described along with their relevance to understanding the behavior of molecules in environments pertinent to pharmacological activity. Together, the various measurements contribute to predictive models of both the physicochemical properties themselves and the outcomes they influence.
Collapse
Affiliation(s)
| | | | - Robert J Young
- 1 GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| |
Collapse
|