1
|
Ross CL, Lawer A, Sircombe KJ, Pletzer D, Gamble AB, Hook S. Site-Specific Antimicrobial Activity of a Dual-Responsive Ciprofloxacin Prodrug. J Med Chem 2024; 67:9599-9612. [PMID: 38780408 DOI: 10.1021/acs.jmedchem.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bacterial infections create distinctive microenvironments with a unique mix of metabolites and enzymes compared with healthy tissues that can be used to trigger the activation of antibiotic prodrugs. Here, a single and dual prodrug masking the C3 carboxylate and C7 piperazine of the fluoroquinolone, ciprofloxacin, responsive to nitroreductase (NTR) and/or hydrogen sulfide (H2S), was developed. Masking both functional groups reduced the activity of the prodrug against Staphylococcus aureus and Escherichia coli, increasing its minimum inhibitory concentration (MIC) by ∼512-fold (S. aureus) and ∼8000-fold (E. coli strains), while masking a single group only increased the MIC by ∼128-fold. Bacteria subjected to prolonged prodrug exposure did not show any increase in resistance. Triggering assays demonstrated the conversion of prodrugs to ciprofloxacin, and in a murine infection model, responsive prodrugs showed antibacterial activity comparable to that of ciprofloxacin, suggesting in vivo activation of prodrugs. Thus, the potential for site-specific antibiotic treatment with reduced threat of resistance is demonstrated.
Collapse
Affiliation(s)
- Catherine L Ross
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Aggie Lawer
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Kathleen J Sircombe
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Chen R, Ye H, Fang T, Liu S, Yi L, Cheng L. An NBD tertiary amine is a fluorescent quencher and/or a weak green-light fluorophore in H 2S-specific probes. Org Biomol Chem 2022; 20:4128-4134. [PMID: 35510487 DOI: 10.1039/d2ob00442a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The thiolysis of NBD piperazinyl amine (NBD-PZ) is highly selective for H2S over GSH and has been widely used for the development of many H2S fluorescent probes. Whether the NBD amine in H2S-specific probes could be a fluorescent quencher should be further clarified, because NBD amines have been used as environment-sensitive fluorophores for many years. Here, we compared the properties of NBD-based secondary and tertiary amines under the same conditions. For example, the emission of NBD-N(Et)2 is much smaller in water and less responsive to changes in polarity than that of NBD-NHEt. The emission of NBD-PZ-TPP is also smaller than that of NBD-NH-TPP both in aqueous buffer and in live cells. In addition, confocal bioimaging signals of NBD-PZ-TPP with excitation at 405 nm and 454 nm are much weaker than that at 488 nm. Based on these results as well as the previous work on NBD-based probes, we discuss and summarize the design strategies and sensing mechanisms for different NBD-based H2S probes. Moreover, NBD-PZ-TPP may be a useful tool for reaction with and imaging of mitochondrial H2S in live cells. This work should be useful for clarification of the roles of NBD in H2S-specific fluorescent probes as well as for facilitating the development of future NBD-based probes.
Collapse
Affiliation(s)
- Ruirui Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Tian Fang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, P. R. China.
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
4
|
Ismail I, Chen Z, Ji X, Sun L, Yi L, Xi Z. A Fast-Response Red Shifted Fluorescent Probe for Detection of H 2S in Living Cells. Molecules 2020; 25:E437. [PMID: 31973081 PMCID: PMC7036821 DOI: 10.3390/molecules25030437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Near-infrared (NIR) fluorescent probes are attractive tools for bioimaging applications because of their low auto-fluorescence interference, minimal damage to living samples, and deep tissue penetration. H2S is a gaseous signaling molecule that is involved in redox homeostasis and numerous biological processes in vivo. To this end, we have developed a new red shifted fluorescent probe 1 to detect physiological H2S in live cells. The probe 1 is based on a rhodamine derivative as the red shifted fluorophore and the thiolysis of 7-nitro 1,2,3-benzoxadiazole (NBD) amine as the H2S receptor. The probe 1 displays fast fluorescent enhancement at 660 nm (about 10-fold turn-ons, k2 = 29.8 M-1s-1) after reacting with H2S in buffer (pH 7.4), and the fluorescence quantum yield of the activated red shifted product can reach 0.29. The probe 1 also exhibits high selectivity and sensitivity towards H2S. Moreover, 1 is cell-membrane-permeable and mitochondria-targeting, and can be used for imaging of endogenous H2S in living cells. We believe that this red shifted fluorescent probe can be a useful tool for studies of H2S biology.
Collapse
Affiliation(s)
- Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Zhuoyue Chen
- Beijing Key Laboratory of Bioprocess and College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China;
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (X.J.); (L.S.)
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (X.J.); (L.S.)
| | - Long Yi
- Beijing Key Laboratory of Bioprocess and College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China;
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China;
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|