1
|
Goon S, Shiu Chen Liu C, Ghosh Dastidar U, Paul B, Mukherjee S, Sarkar HS, Desai M, Jana R, Pal S, Sreedevi NV, Ganguly D, Talukdar A. Exploring the Structural Attributes of Yoda1 for the Development of New-Generation Piezo1 Agonist Yaddle1 as a Vaccine Adjuvant Targeting Optimal T Cell Activation. J Med Chem 2024; 67:8225-8246. [PMID: 38716967 DOI: 10.1021/acs.jmedchem.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Piezo1, a mechano-activated ion channel, has wide-ranging physiological and therapeutic implications, with the ongoing development of specific agonists unveiling cellular responses to mechanical stimuli. In our study, we systematically analyzed the chemical subunits in Piezo1 protein agonist Yoda1 to comprehend the structure-activity relationship and push forward next-generation agonist development. Preliminary screening assays for Piezo1 agonism were performed using the Piezo1-mCherry-transfected HEK293A cell line, keeping Yoda1 as a positive control. We introduce a novel Piezo1 agonist Yaddle1 (34, 0.40 μM), featuring a trifluoromethyl group, with further exploration through in vitro studies and density functional theory calculations, emphasizing its tetrel interactions, to act as an ambidextrous wedge between the domains of Piezo1. In contrast to the poor solubility of the established agonist Yoda1, our results showed that the kinetic solubility of Yaddle1 (26.72 ± 1.8 μM at pH 7.4) is 10-fold better than that of Yoda1 (1.22 ± 0.11 μM at pH 7.4). Yaddle1 (34) induces Ca2+ influx in human CD4+ T cell, suggesting its potential as a vaccine adjuvant for enhanced T cell activation.
Collapse
Affiliation(s)
- Sunny Goon
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Chinky Shiu Chen Liu
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Suravi Mukherjee
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Himadri Sekhar Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Milie Desai
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Rituparna Jana
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Namala Venkata Sreedevi
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, CN6, Sector V, Salt Lake, Kolkata 700091, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Amoroso R, Maccallini C, Bellezza I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12030778. [PMID: 36979026 PMCID: PMC10045503 DOI: 10.3390/antiox12030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.
Collapse
Affiliation(s)
- Rosa Amoroso
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
3
|
Zhang R, Li B, Chi C, Liu Y, Liu X, Li J, Li W, Chen B. Design, synthesis, antiproliferative and antimicrobial evaluation of a new class of disulfides containing 1,3,4-thiadiazole units. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Comparative Study of the Synthetic Approaches and Biological Activities of the Bioisosteres of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles over the Past Decade. Molecules 2022; 27:molecules27092709. [PMID: 35566059 PMCID: PMC9102899 DOI: 10.3390/molecules27092709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.
Collapse
|
5
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|