1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Liaqat F, Xu L, Khazi MI, Ali S, Rahman MU, Zhu D. Extraction, purification, and applications of vanillin: A review of recent advances and challenges. INDUSTRIAL CROPS AND PRODUCTS 2023; 204:117372. [DOI: 10.1016/j.indcrop.2023.117372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
3
|
Janković N, Tadić J, Milović E, Marković Z, Jeremić S, Petronijević J, Joksimović N, Borović TT, Abbas Bukhari SN. Investigation of the radical scavenging potential of vanillin-based pyrido-dipyrimidines: experimental and in silico approach. RSC Adv 2023; 13:15236-15242. [PMID: 37213339 PMCID: PMC10194046 DOI: 10.1039/d3ra02469e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
Antioxidants have a significant contribution in the cell protection against free radicals which may induce oxidative stress, and permanently damage the cells causing different disorders such as tumors, degenerative diseases, and accelerated aging. Nowadays, a multi-functionalized heterocyclic framework plays an important role in drug development, and it is of great importance in organic synthesis and medicinal chemistry. Encouraged by the bioactivity of the pyrido-dipyrimidine scaffold and vanillin core, herein, we made an effort to thoroughly investigate the antioxidant potential of the vanillin-based pyrido-dipyrimidines A-E to reveal novel promising free radical inhibitors. The structural analysis and the antioxidant action of the investigated molecules were performed in silico by DFT calculations. Studied compounds were screened for their antioxidant capacity using in vitro ABTS and DPPH assays. All the investigated compounds showed remarkable antioxidant activity, especially derivative A exhibiting inhibition of free radicals at the IC50 value (ABTS and DPPH assay 0.1 mg ml-1 and 0.081 mg ml-1, respectively). Compound A has higher TEAC values implying its stronger antioxidant activity compared to a trolox standard. The applied calculation method and in vitro tests confirmed that compound A has a strong potential against free radicals and may be a novel candidate for application in antioxidant therapy.
Collapse
Affiliation(s)
- Nenad Janković
- University of Kragujevac, Institute for Information Technologies, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Julijana Tadić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade Mike Petrovića Alasa 12-14 11351 Vinča Belgrade Serbia
| | - Emilija Milović
- University of Kragujevac, Institute for Information Technologies, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Department of Sciences Jovana Cvijića bb 34000 Kragujevac Serbia
- The State University of Novi Pazar 36300 Novi Pazar Serbia
| | | | - Jelena Petronijević
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 Kragujevac Serbia
| | - Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry Radoja Domanovića 12 Kragujevac Serbia
| | - Teona Teodora Borović
- Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka Al Jouf 72388 Saudi Arabia
| |
Collapse
|
4
|
Elsbaey M, Igarashi Y, Ibrahim MAA, Elattar E. Click-designed vanilloid-triazole conjugates as dual inhibitors of AChE and Aβ aggregation. RSC Adv 2023; 13:2871-2883. [PMID: 36756452 PMCID: PMC9850456 DOI: 10.1039/d2ra07539c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Based on their reported neuroprotective properties, vanilloids provide a good starting point for the synthesis of anti-Alzheimer's disease (AD) agents. In this context, nine new 1,2,3-triazole conjugates of vanilloids were synthesized via click chemistry. The compounds were tested for their effect on acetylcholine esterase (AChE) and amyloid-beta peptide (Aβ) aggregation. The triazole esters (E)-(1-(4-hydroxy-3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl 3-(4-hydroxy-3 methoxyphenyl)acrylate 9 and (1-(4-hydroxy-3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl-4-hydroxy-3-methoxybenzoate 8 displayed dual inhibitory activity for AChE and Aβ aggregation with IC50 values of 0.47/0.31 μM and 1.2/0.95 μM, respectively, as compared to donepezil (0.27 μM) and tacrine (0.41 μM), respectively. The results showed that the triazole ester moiety is more favorable for the activity than the triazole ether moiety. This could be attributed to the longer length of the spacer between the two vanillyl moieties in the triazole esters. Furthermore, the binding affinities and modes of the triazole esters 9 and 8 were examined against AChE and Aβ utilizing a combination of docking predictions and molecular dynamics (MD) simulations. Docking computations revealed promising binding affinity of triazole esters 9 and 8 as potential AChE, Aβ40, and Aβ42 inhibitors with docking scores of -10.4 and -9.4 kcal mol-1, -5.8 and -4.7 kcal mol-1, and -3.3 and -2.9 kcal mol-1, respectively. The stability and binding energies of triazole esters 9 and 8 complexed with AChE, Aβ40, and Aβ42 were measured and compared to donepezil and tacrine over 100 ns MD simulations. According to the estimated binding energies, compounds 9 and 8 displayed good binding affinities with AChE, Aβ42, and Aβ40 with average ΔG binding values of -32.9 and -31.8 kcal mol-1, -12.0 and -10.5 kcal mol-1, and -20.4 and -16.6 kcal mol-1, respectively. Post-MD analyses demonstrated high steadiness for compounds 9 and 8 with AChE and Aβ during the 100 ns MD course. This work suggests the triazole conjugate of vanilloids as a promising skeleton for developing multi-target potential AD therapeutics.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu Toyama 939-0398 Japan
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University 61519 Egypt
- School of Health Sciences, University of KwaZulu-Natal Westville Durban 4000 South Africa
| | - Eman Elattar
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
5
|
Iannuzzi C, Liccardo M, Sirangelo I. Overview of the Role of Vanillin in Neurodegenerative Diseases and Neuropathophysiological Conditions. Int J Mol Sci 2023; 24:ijms24031817. [PMID: 36768141 PMCID: PMC9915872 DOI: 10.3390/ijms24031817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Nowadays, bioactive natural products play key roles in drug development due to their safety profile and strong antioxidant power. Vanillin is a natural phenolic compound found in several vanilla beans and widely used for food, cosmetic, and pharmaceutical products. Besides its industrial applications, vanillin possesses several beneficial effects for human health, such as antioxidant activity in addition to anti-inflammatory, anti-mutagenic, anti-metastatic, and anti-depressant properties. Moreover, vanillin exhibits neuroprotective effects on multiple neurological disorders and neuropathophysiological conditions. This study reviews the mechanisms of action by which vanillin prevents neuroinflammation and neurodegeneration in vitro and in vivo systems, in order to provide the latest views on the beneficial properties of this molecule in chronic neurodegenerative diseases and neuropathophysiological conditions.
Collapse
|
6
|
Dehabadi MH, Caflisch A, Ilie IM, Firouzi R. Interactions of Curcumin's Degradation Products with the Aβ 42 Dimer: A Computational Study. J Phys Chem B 2022; 126:7627-7637. [PMID: 36148988 DOI: 10.1021/acs.jpcb.2c05846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-β (Aβ) dimers are the smallest toxic species along the amyloid-aggregation pathway and among the most populated oligomeric accumulations present in the brain affected by Alzheimer's disease (AD). A proposed therapeutic strategy to avoid the aggregation of Aβ into higher-order structures is to develop molecules that inhibit the early stages of aggregation, i.e., dimerization. Under physiological conditions, the Aβ dimer is highly dynamic and does not attain a single well-defined structure but is rather characterized by an ensemble of conformations. In a recent study, a highly heterogeneous library of conformers of the Aβ dimer was generated by an efficient sampling method with constraints based on ion mobility mass spectrometry data. Here, we make use of the Aβ dimer library to study the interaction with two curcumin degradation products, ferulic aldehyde and vanillin, by molecular dynamics (MD) simulations. Ensemble docking and MD simulations are used to provide atomistic detail of the interactions between the curcumin degradation products and the Aβ dimer. The simulations show that the aromatic residues of Aβ, and in particular 19FF20, interact with ferulic aldehyde and vanillin through π-π stacking. The binding of these small molecules induces significant changes on the 16KLVFF20 region.
Collapse
Affiliation(s)
- Maryam Haji Dehabadi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Boulevard, 1496813151 Tehran, Iran
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ioana M Ilie
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Pajohesh Boulevard, 1496813151 Tehran, Iran
| |
Collapse
|
7
|
Wang R, Ren Q, Gao D, Paudel YN, Li X, Wang L, Zhang P, Wang B, Shang X, Jin M. Ameliorative effect of Gastrodia elata Blume extracts on depression in zebrafish and cellular models through modulating reticulon 4 receptors and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115018. [PMID: 35092824 DOI: 10.1016/j.jep.2022.115018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (G. elata), a traditional Chinese herb, known as "Tian Ma", is widely used as a common medicine and diet ingredient for treating or preventing neurological disorders for thousands of years in China. However, the anti-depressant effect of G. elata and the underlying mechanism have not been fully evaluated. AIM OF THE STUDY The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively. MATERIAL AND METHODS Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes. RESULTS G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes. CONCLUSION Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.
Collapse
Affiliation(s)
- Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Qingyu Ren
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia.
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Ji'nan, 250101, Shandong Province, PR China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Pengyu Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
8
|
Zhao Y, Mu Y, Luo W, Tian Z. Synthesis of Naphthalimide Derivatives as Cholinesterase Inhibitors with Aggregation Induced Emission Properties. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Almeida FS, Sousa GLS, Rocha JC, Ribeiro FF, de Oliveira MR, de Lima Grisi TCS, Araújo DAM, de C Nobre MS, Castro RN, Amaral IPG, Keesen TSL, de Moura RO. In vitro anti-Leishmania activity and molecular docking of spiro-acridine compounds as potential multitarget agents against Leishmania infantum. Bioorg Med Chem Lett 2021; 49:128289. [PMID: 34311084 DOI: 10.1016/j.bmcl.2021.128289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is an infectious disease with several limitations regarding treatment schemes. This work reports the anti-Leishmania activity of spiroacridine compounds against the promastigote (IC50 = 1.1 to 6.0 µg / mL) and amastigote forms of the best compounds (EC50 = 4.9 and 0.9 µg / mL) inLeishmania (L.) infantumand proposes an in-silico study with possible selective therapeutic targets for L. infantum. The substituted dimethyl-amine compound (AMTAC 11) showed the best leishmanicidal activity in vitro, and was found to interact with TryRandLdTopoI. comparisons with standard inhibitors were performed, and its main interactions were elucidated. Based on the biological assessment and the structure-activity relationship study, the spiroacridine compounds appear to be promisinganti-leishmaniachemotherapeutic agents to be explored.
Collapse
Affiliation(s)
- Fernanda S Almeida
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil; Laboratório de Imunologia das Doenças Infeciosas, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Gleyton L S Sousa
- Programa de Doutorado em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Juliana C Rocha
- Laboratório de Imunologia das Doenças Infeciosas, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Frederico F Ribeiro
- Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil
| | - Márcia Rosa de Oliveira
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Paraíba CEP 58059-900, Brazil
| | | | - Demetrius A M Araújo
- Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil
| | - Michelangela S de C Nobre
- Programa de Doutorado em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Rosane N Castro
- Programa de Doutorado em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Ian P G Amaral
- Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil
| | - Tatjana S L Keesen
- Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, PB 58059-900, Brazil; Laboratório de Imunologia das Doenças Infeciosas, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Ricardo Olímpio de Moura
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Campina Grande, PB 58429-500, Brazil.
| |
Collapse
|
10
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|