1
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
2
|
Jenkins C, Micallef ML, Padula MP, Bogema DR. Characterisation of the Theileria orientalis Piroplasm Proteome across Three Common Genotypes. Pathogens 2022; 11:pathogens11101135. [PMID: 36297192 PMCID: PMC9610513 DOI: 10.3390/pathogens11101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Theileria orientalis is an emerging apicomplexan pathogen of cattle occurring in areas populated by the principal vector tick, Haemaphysalis longicornis. Unlike transforming Theileria spp. that induce cancer-like proliferation of lymphocytes via their schizont stage, T. orientalis destroys host erythrocytes during its piroplasm phase resulting in anaemia. The underlying pathogenic processes of T. orientalis infection are poorly understood; consequently, there are no vaccines for prevention of T. orientalis infection and chemotherapeutic options are limited. To identify antigens expressed during the piroplasm phase of T. orientalis, including those which may be useful targets for future therapeutic development, we examined the proteome across three common genotypes of the parasite (Ikeda, Chitose and Buffeli) using preparations of piroplasms purified from bovine blood. A combination of Triton X-114 extraction, one-dimensional electrophoresis and LC-MS/MS identified a total of 1113 proteins across all genotypes, with less than 3% of these representing host-derived proteins. Just over three quarters of T. orientalis proteins (78%) identified were from the aqueous phase of the TX-114 extraction representing cytosolic proteins, with the remaining 22% from the detergent phase, representing membrane-associated proteins. All enzymes involved in glycolysis were expressed, suggesting that this is the major metabolic pathway used during the T. orientalis piroplasm phase. Proteins involved in binding and breakdown of haemoglobin were also identified, suggesting that T. orientalis uses haemoglobin as a source of amino acids. A number of proteins involved in host cell interaction were also identified which may be suitable targets for the development of chemotherapeutics or vaccines.
Collapse
Affiliation(s)
- Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
- Correspondence: ; Tel.: +61-2-4640-6396
| | - Melinda L. Micallef
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Sciences, University of Technology, Sydney, NSW 2007, Australia
| | - Daniel R. Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| |
Collapse
|
4
|
Characterization of Dense Granule Metalloproteinase INS-16 in Cryptosporidium parvum. Int J Mol Sci 2022; 23:ijms23147617. [PMID: 35886965 PMCID: PMC9315855 DOI: 10.3390/ijms23147617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The protozoan pathogen Cryptosporidium parvum infects intestinal epithelial cells and causes diarrhea in humans and young animals. Among the more than 20 genes encoding insulinase-like metalloproteinases (INS), two are paralogs with high sequence identity. In this study, one of them, INS-16 encoded by the cgd3_4270 gene, was expressed and characterized in a comparative study of its sibling, INS-15 encoded by the cgd3_4260 gene. A full-length INS-16 protein and its active domain I were expressed in Escherichia coli, and antibodies against the domain I and an INS-16-specific peptide were produced in rabbits. In the analysis of the crude extract of oocysts, a ~60 kDa fragment of INS-16 rather than the full protein was recognized by polyclonal antibodies against the specific peptide, indicating that INS-16 undergoes proteolytic cleavage before maturation. The expression of the ins-16 gene peaked at the invasion phase of in vitro C. parvum culture, with the documented expression of the protein in both sporozoites and merozoites. Localization studies with antibodies showed significant differences in the distribution of the native INS-15 and INS-16 proteins in sporozoites and merozoites. INS-16 was identified as a dense granule protein in sporozoites and macrogamonts but was mostly expressed at the apical end of merozoites. We screened 48 candidate INS-16 inhibitors from the molecular docking of INS-16. Among them, two inhibited the growth of C. parvum in vitro (EC50 = 1.058 µM and 2.089 µM). The results of this study suggest that INS-16 may have important roles in the development of C. parvum and could be a valid target for the development of effective treatments.
Collapse
|
5
|
Eagon S, Howland M, Heying M, Callant E, Brar N, Pompa E, Mallari JP. Identification of Plasmodium falciparum falcilysin inhibitors by a virtual screen. Bioorg Med Chem Lett 2021; 52:128394. [PMID: 34606998 DOI: 10.1016/j.bmcl.2021.128394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Scott Eagon
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - McClane Howland
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Michael Heying
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Emma Callant
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Nimrat Brar
- Department of Chemistry and Biochemistry, California State University, San Bernadino, CA, USA
| | - Emmett Pompa
- Department of Chemistry and Biochemistry, California State University, San Bernadino, CA, USA
| | - Jeremy P Mallari
- Department of Chemistry and Biochemistry, California State University, San Bernadino, CA, USA
| |
Collapse
|