1
|
Walpurgis K, Agricola J, Thomas A, Thevis M. Myostatin inhibitory peptides in sports drug testing. Drug Test Anal 2023; 15:1477-1487. [PMID: 36946003 DOI: 10.1002/dta.3473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Across species, skeletal muscle mass is negatively regulated by the TGF-β cytokine myostatin (MSTN). Inhibitors of this growth factor and its signaling pathways are therefore not only promising therapeutics for muscular diseases but also potential performance-enhancing agents in sports. Within this study, protein precipitation and liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) were employed to develop a detection method for six novel MSTN inhibitory peptides derived from the regulatory MSTN propeptide and the natural MSTN inhibitor follistatin (FST) from doping control serum samples. The approach was comprehensively characterized and found to allow for a specific detection down to concentrations of 3-9 ng/mL. Moreover, several potential metabolites of the drug candidates referred to as DF-3, DF-25, and Peptide 7 were identified as valuable complementary analytical targets for doping control analytical assays. Overall, the acquired data pave the way for an implementation of MSTN inhibitory peptides into routine sports drug testing. Even though no drug candidate has obtained clinical approval yet, a proactive development of detection assays is of utmost importance to deter athletes from misusing such compounds, which are readily available for research purposes and on the black market.
Collapse
Affiliation(s)
- Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Johannes Agricola
- Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
2
|
Hassan AK, Bursais AK, Ata SN, Selim HS, Alibrahim MS, Hammad BE. The effect of TRX, combined with vibration training, on BMI, the body fat percentage, myostatin and follistatin, the strength endurance and layup shot skills of female basketball players. Heliyon 2023; 9:e20844. [PMID: 37867894 PMCID: PMC10585344 DOI: 10.1016/j.heliyon.2023.e20844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Trx Vibration Training (TVT) focuses on using the entire body weight in combination with vibration. While research has separately examined TRX training and vibration training, there is limited literature on the combined effects of these two methods specifically for female individuals. Therefore, the objective of this study was to examine the impact of combining TRX and vibration training (TVT) on various factors including body mass index (BMI), body fat percentage (BFP), myostatin (MSTN), follistatin (FLST), endurance, and Lay up shooting skills of female basketball players. By addressing this research gap, we aim to shed light on the potential benefits of incorporating TRX and vibration exercises into the training regimen of female basketball players. Method The study sample comprised 24 female players who were divided into two groups of equal size, with each group consisting of 12 female players: the experimental group (n = 12, age = 19.17 ± 0.68 years, height = 168.33 ± 0.89 cm, weight = 67.00 ± 2.17 kg, training age = 4.54 ± 0.45 years) and the control group (n = 12, age = 19.33 ± 0.78 years, height = 168.08 ± 2.02 cm, weight = 67.33 ± 1.50 kg, training age = 4.58 ± 0.52 years). The experimental method was employed in the study. For eight weeks, the program was used (TVT), with the experimental group participants completing three training sessions each week. The TVT training lasted between 30 and 45 min, out of the overall training session time, which ranged from 90 to 120 min. The control group used a conventional program without Trx Vibration training. Study variables were evaluated before and after the intervention, and a two-way ANOVA was used for repeated measures. Results The results of the study showed the superiority of the experimental group over the control group in BMI (p = 0.037, [d] = 0.64), BFP (p = 0.001, [d] = 2.97), FLST levels (p = 0.029, [d] = 0.68), MSTN (p = 0.001, [d] = 2.04), endurance (CMS) (p = 0.001, [d] = 4.56), and Lay up skill Y (s) (p = 0.001, [d] = 4.27), Y (sc) (p = 0.012, [d] = 4.27). Conclusion The results showed that, when comparing the two groups, the TVT program significantly improved the study's variables. Basketball players' motor abilities and skill performance improved after eight weeks of training, and coaches are advised to take this into account when developing seasonal training plans.
Collapse
Affiliation(s)
- Ahmed K. Hassan
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Team Sports and Racket Games, Faculty of Physical Education, Minia University, Minya, 61519, Egypt
| | - Abdulmalek K. Bursais
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Sobhi Noureldin Ata
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Kinesiology, Faculty of Physical Education, Mansoura University, Egypt
| | - Hossam S. Selim
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammed S. Alibrahim
- Department of Physical Education, College of Education, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Badry E. Hammad
- Department of Fights and Individual Sports, Faculty of Physical Education, Minia University, Minya, 61519, Egypt
| |
Collapse
|
3
|
Hanada K, Fukasawa K, Hiroki H, Imai S, Takayama K, Hirai H, Ohfusa R, Hayashi Y, Itoh F. Combination therapy of anamorelin with a myostatin inhibitor is advantageous for cancer cachexia in a mouse model. Cancer Sci 2022; 113:3547-3557. [PMID: 35849084 PMCID: PMC9530881 DOI: 10.1111/cas.15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cachexia is a multifactorial disease that causes continuous skeletal muscle wasting. Thereby, it seems to be a key determinant of cancer‐related death. Although anamorelin, a ghrelin receptor agonist, has been approved in Japan for the treatment of cachexia, few medical treatments for cancer cachexia are currently available. Myostatin (MSTN)/growth differentiation factor 8, which belongs to the transforming growth factor‐β family, is a negative regulator of skeletal muscle mass, and inhibition of MSTN signaling is expected to be a therapeutic target for muscle‐wasting diseases. Indeed, we have reported that peptide‐2, an MSTN‐inhibiting peptide from the MSTN prodomain, alleviates muscle wasting due to cancer cachexia. Herein, we evaluated the therapeutic benefit of myostatin inhibitory D‐peptide‐35 (MID‐35), whose stability and activity were more improved than those of peptide‐2 in cancer cachexia model mice. The biologic effects of MID‐35 were better than those of peptide‐2. Intramuscular administration of MID‐35 effectively alleviated skeletal muscle atrophy in cachexia model mice, and the combination therapy of MID‐35 with anamorelin increased food intake and maximized grip strength, resulting in longer survival. Our results suggest that this combination might be a novel therapeutic tool to suppress muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Shú Imai
- Laboratory of Stem cells Regulation
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.,Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto, Japan
| | | | - Rina Ohfusa
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | | |
Collapse
|
4
|
Takayama K. Peptide Tool-Driven Functional Elucidation of Biomolecules Related to Endocrine System and Metabolism. Chem Pharm Bull (Tokyo) 2022; 70:413-419. [PMID: 35650039 DOI: 10.1248/cpb.c22-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enhancement of basic research based on biomolecule-derived peptides has the potential to elucidate their biological function and lead to the development of new drugs. In this review, two biomolecules, namely "neuromedin U (NMU)" and "myostatin," are discussed. NMU, a neuropeptide first isolated from the porcine spinal cord, non-selectively activates two types of receptors (NMUR1 and NMUR2) and displays a variety of physiological actions, including appetite suppression. The development of receptor-selective regulators helps elucidate each receptor's detailed biological roles. A structure-activity relationship (SAR) study was conducted to achieve this purpose using the amidated C-terminal core structure of NMU for receptor activation. Through obtaining receptor-selective hexapeptide agonists, molecular functions of the core structure were clarified. Myostatin is a negative regulator of skeletal muscle growth and has attracted attention as a target for treating atrophic muscle disorders. Although the protein inhibitors, such as antibodies and receptor-decoys have been developed, the inhibition by smaller molecules, including peptides, is less advanced. Focusing on the inactivation mechanism by prodomain proteins derived from myostatin-precursor, a first mid-sized α-helical myostatin-inhibitory peptide (23-mer) was identified from the mouse sequence. The detailed SAR study based on this peptide afforded the structural requirements for effective inhibition. The subsequent computer simulation proposed the docking mode at the activin type I receptor binding site of myostatin. The resulting development of potent inhibitors suggested the existence of a more appropriate binding mode linked to their β-sheet forming properties, suggesting that further investigations might be needed.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
5
|
Takayama K, Hitachi K, Okamoto H, Saitoh M, Odagiri M, Ohfusa R, Shimada T, Taguchi A, Taniguchi A, Tsuchida K, Hayashi Y. Development of Myostatin Inhibitory d-Peptides to Enhance the Potency, Increasing Skeletal Muscle Mass in Mice. ACS Med Chem Lett 2022; 13:492-498. [PMID: 35300091 PMCID: PMC8919388 DOI: 10.1021/acsmedchemlett.1c00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Myostatin is a key negative regulator of skeletal muscle growth, and myostatin inhibitors are attractive tools for the treatment of muscular atrophy. Previously, we reported a series of 14-29-mer peptide myostatin inhibitors, including a potent derivative, MIPE-1686, a 16-mer N-terminal-free l-peptide with three unnatural amino acids and a propensity to form β-sheets. However, the in vivo biological stability of MIPE-1686 is a concern for its development as a drug. In the present study, to develop a more stable myostatin inhibitory d-peptide (MID), we synthesized various retro-inverso versions of a 16-mer peptide. Among these, an arginine-containing derivative, MID-35, shows a potent and equivalent in vitro myostatin inhibitory activity equivalent to that of MIPE-1686 and considerable stability against biodegradation. The in vivo potency of MID-35 to increase the tibialis anterior muscle mass in mice is significantly enhanced over that of MIPE-1686, and MID-35 can serve as a new entity for the prolonged inactivation of myostatin in skeletal muscle.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideyuki Okamoto
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mariko Saitoh
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Miki Odagiri
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Rina Ohfusa
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Shimada
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|