1
|
Li Y, Bai L, Liang H, Yan P, Chen H, Cao Z, Shen Y, Wang Z, Huang M, He B, Hao Q, Mei Y, Wei H, Ding C, Jin J, Wang Y. A BPTF-specific PROTAC degrader enhances NK cell-based cancer immunotherapy. Mol Ther 2025; 33:1566-1583. [PMID: 39935175 PMCID: PMC11997503 DOI: 10.1016/j.ymthe.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Natural killer (NK) cell-based immunotherapy shows promise in cancer treatment, but its efficacy remains limited, necessitating the development of novel strategies. In this study, we demonstrate that the epigenetic factor bromodomain PHD-finger containing transcription factor (BPTF) hinders hepatocellular carcinoma (HCC) recognition by NK cells through its PHD finger's interpretation of H3K4me3. We have generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degrades human and murine BPTF. The degradation of BPTF using PROTACs directly enhances the abundance of natural cytotoxicity receptor ligands on HCC cells, facilitating their recognition by NK cells and thereby augmenting NK cell cytotoxicity against HCC both in vitro and in vivo. Through multidisciplinary techniques, our findings establish targeting BPTF with PROTACs as a promising approach to overcome immune evasion of HCC from NK cells and provide a new strategy to enhance NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Hao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peidong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhuoxian Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yiqing Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongyv Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yide Mei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Zahid H, Costello JP, Li Y, Kimbrough JR, Actis M, Rankovic Z, Yan Q, Pomerantz WCK. Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes. ACS Chem Biol 2023; 18:1278-1293. [PMID: 37260298 PMCID: PMC10698694 DOI: 10.1021/acschembio.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Targeted protein degradation is an emerging technology that can be used for modulating the activity of epigenetic protein targets. Among bromodomain-containing proteins, a number of degraders for the BET family have been developed, while non-BET bromodomains remain underexplored. Several of these proteins are subunits in chromatin remodeling complexes often associated with oncogenic roles. Here, we describe the design of class I (BPTF and CECR2) and IV (BRD9) bromodomain-targeting degraders based on two scaffolds derived from pyridazinone and pyrimidine-based heterocycles. We evaluate various exit vectors and linkers to identify analogues that demonstrate selectivity within these families. We further use an in-cell NanoBRET assay to demonstrate that these heterobifunctional molecules are cell-permeable, form ternary complexes, and can degrade nanoluciferase-bromodomain fusions. As a first example of a CECR2 degrader, we observe that our pyrimidine-based analogues degrade endogenous CECR2 while showing a smaller effect on BPTF levels. The pyridazinone-based compounds did not degrade BPTF when observed through Western blotting, further supporting a more challenging target for degradation and a goal for future optimization.
Collapse
Affiliation(s)
- Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jeff P Costello
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Yao Li
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Marisa Actis
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Martinelli P, Schaaf O, Mantoulidis A, Martin LJ, Fuchs JE, Bader G, Gollner A, Wolkerstorfer B, Rogers C, Balıkçı E, Lipp JJ, Mischerikow N, Doebel S, Gerstberger T, Sommergruber W, Huber KVM, Böttcher J. Discovery of a Chemical Probe to Study Implications of BPTF Bromodomain Inhibition in Cellular and in vivo Experiments. ChemMedChem 2023; 18:e202200686. [PMID: 36649575 DOI: 10.1002/cmdc.202200686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
The bromodomain and PHD-finger containing transcription factor (BPTF) is part of the nucleosome remodeling factor (NURF) complex and has been implicated in multiple cancer types. Here, we report the discovery of a potent and selective chemical probe targeting the bromodomain of BPTF with an attractive pharmacokinetic profile enabling cellular and in vivo experiments in mice. Microarray-based transcriptomics in presence of the probe in two lung cancer cell lines revealed only minor effects on the transcriptome. Profiling against a panel of cancer cell lines revealed that the antiproliferative effect does not correlate with BPTF dependency score in depletion screens. Both observations and the multi-domain architecture of BPTF suggest that depleting the protein by proteolysis targeting chimeras (PROTACs) could be a promising strategy to target cancer cell proliferation. We envision that the presented chemical probe and the related negative control will enable the research community to further explore scientific hypotheses with respect to BPTF bromodomain inhibition.
Collapse
Affiliation(s)
- Paola Martinelli
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Otmar Schaaf
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Laetitia J Martin
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Julian E Fuchs
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Bernhard Wolkerstorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Catherine Rogers
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Esra Balıkçı
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Jesse J Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Nikolai Mischerikow
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Sandra Doebel
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Kilian V M Huber
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| |
Collapse
|
4
|
Liang X, Cao Y, Duan Z, Wang M, Zhang N, Ding Y, Luo C, Lu N, Chen S. Discovery of new small molecule inhibitors of the BPTF bromodomain. Bioorg Chem 2023; 134:106453. [PMID: 36898211 DOI: 10.1016/j.bioorg.2023.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Chromatin remodeling regulates many basic cellular processes, such as gene transcription, DNA repair, and programmed cell death. As the largest member of nucleosome remodeling factor (NURF), BPTF plays a vital role in the occurrence and development of cancer. Currently, BPTF bromodomain inhibitors are still in development. In this study, by conducting homogenous time-resolved fluorescence resonance energy transfer (HTRF) assay, we identified a potential, novel BPTF inhibitor scaffold Sanguinarine chloride with the IC50 value of 344.2 ± 25.1 nM. Biochemical analysis revealed that compound Sanguinarine chloride exhibited high binding affinity to the BPTF bromodomain. Molecular docking predicted the binding mode of Sanguinarine chloride and elucidated the activities of its derivatives. Moreover, Sanguinarine chloride showed a potent anti-proliferative effect in MIAPaCa-2 cells and inhibited the expression of BPTF target gene c-Myc. Taken together, Sanguinarine chloride provides a qualified chemical tool for developing potent BPTF bromodomain inhibitors.
Collapse
Affiliation(s)
- Xiaochen Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhe Duan
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiluan Ding
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Recent synthetic advances in borylated pyrazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zahid H, Buchholz CR, Singh M, Ciccone MF, Chan A, Nithianantham S, Shi K, Aihara H, Fischer M, Schönbrunn E, Dos Santos CO, Landry JW, Pomerantz WCK. New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition. J Med Chem 2021; 64:13902-13917. [PMID: 34515477 DOI: 10.1021/acs.jmedchem.1c01294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nucleosome remodeling factor (NURF) alters chromatin accessibility through interactions with its largest subunit,the bromodomain PHD finger transcription factor BPTF. BPTF is overexpressed in several cancers and is an emerging anticancer target. Targeting the BPTF bromodomain presents a potential strategy for its inhibition and the evaluation of its functional significance; however, inhibitor development for BPTF has lagged behind those of other bromodomains. Here we describe the development of pyridazinone-based BPTF inhibitors. The lead compound, BZ1, possesses a high potency (Kd = 6.3 nM) and >350-fold selectivity over BET bromodomains. We identify an acidic triad in the binding pocket to guide future designs. We show that our inhibitors sensitize 4T1 breast cancer cells to doxorubicin but not BPTF knockdown cells, suggesting a specificity to BPTF. Given the high potency and good physicochemical properties of these inhibitors, we anticipate that they will be useful starting points for chemical tool development to explore the biological roles of BPTF.
Collapse
Affiliation(s)
- Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Manjulata Singh
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Michael F Ciccone
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Stanley Nithianantham
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Joseph W Landry
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|