1
|
Becerra D, Castillo JC. Recent advances in the synthesis of anticancer pyrazole derivatives using microwave, ultrasound, and mechanochemical techniques. RSC Adv 2025; 15:7018-7038. [PMID: 40041378 PMCID: PMC11878059 DOI: 10.1039/d4ra08866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Pyrazole and its derivatives have attracted considerable attention in pharmaceutical and medicinal chemistry, as reflected in their presence in numerous FDA-approved drugs and clinical candidates. This review presents a comprehensive analysis of articles published between 2014 and 2024, focusing on the microwave-, ultrasound-, and mechanochemical-assisted synthesis of pyrazole derivatives with anticancer activity. It explores synthetic methodologies, anticancer efficacy, and molecular docking studies, underscoring the significance of pyrazole derivatives in drug discovery and medicinal chemistry. Notably, microwave irradiation stands out as the most widely employed technique, providing high efficiency by significantly reducing reaction times while maintaining moderate temperatures. Ultrasound irradiation serves as a valuable alternative, particularly for processes that require milder conditions, whereas mechanochemical activation, though less frequently employed, offers distinct advantages in terms of sustainability.
Collapse
Affiliation(s)
- Diana Becerra
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia Avenida Central del Norte 39-115 Tunja Colombia
| | - Juan-Carlos Castillo
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia Avenida Central del Norte 39-115 Tunja Colombia
| |
Collapse
|
2
|
Ford J, Ortalli S, Chen Z, Sap JBI, Tredwell M, Gouverneur V. Expedient Access to 18F-Fluoroheteroarenes via Deaminative Radiofluorination of Aniline-Derived Pyridinium Salts. Angew Chem Int Ed Engl 2024; 63:e202404945. [PMID: 38624193 DOI: 10.1002/anie.202404945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Herein, we disclose that pyridinium salts derived from abundant (hetero)anilines represent a novel precursor class for nucleophilic aromatic substitution reactions with [18F]fluoride. The value of this new 18F-fluorodeamination is demonstrated with the synthesis of over 30 structurally diverse and complex heteroaryl 18F-fluorides, several derived from scaffolds that were yet to be labelled with fluorine-18. The protocol tolerates heteroarenes and functionalities commonly found in drug discovery libraries, and is amenable to scale-up and automation on a commercial radiosynthesiser.
Collapse
Affiliation(s)
- Joseph Ford
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Sebastiano Ortalli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Jeroen B I Sap
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
- Current address: Department of Translational Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
- School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
3
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
4
|
Osman NA, El-Sayed NS, Abdel Fattah HA, Almalki AJ, Kammoun AK, Ibrahim TS, Alharbi AS, Al-Mahmoudy AM. Design, Synthesis and Anticancer Evaluation of New 1-allyl-4-oxo-6-(3,4,5- trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile Bearing Pyrazole Moieties. Curr Org Synth 2023; 20:897-909. [PMID: 36941818 DOI: 10.2174/1570179420666230320153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 03/23/2023]
Abstract
AIM pyrimidine and pyrazole have various biological and pharmaceutical applications such as antibacterial, antifungal, antileishmanial, anti-inflammatory, antitumor, and anti-cancer. INTRODUCTION In this search, the goal is to prepare pyrimidine-pyrazoles and study their anticancer activity. METHODS 1-allyl-4-oxo-6-(3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazoles (4,6-8) have been synthesized. Firstly, the reaction of 1-allyl-2-(methylthio)-4-oxo-6- (3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile (1) with chalcones 2a-b produced the intermediates 3a-b. The latter was reacted with hydrazine hydrate to give the targets 4a-b. On the other hand, hydrazinolysis of compound 1 yielded the hydrazino derivative 5 which upon reaction with chalcones 2c-i or 1,3-bicarbonyl compounds afforded the compounds 6-8. Finally, the new compounds were characterized by spectral data (IR, 1H NMR, 13C NMR) and elemental analysis. Moreover, they were evaluated for Panc-1, MCF-7, HT-29, A-549, and HPDE cell lines as anticancer activity. RESULTS All the tested compounds 3,4,6-8 showed IC50 values > 50 μg/mL against the HPDE cell line. Compounds 6a and 6e exhibited potent anticancer activity where the IC50 values in the range of 1.7- 1.9, 1.4-182, 1.75-1.8, and 1.5-1.9 μg/mL against Panc-1, MCF-7, HT-29, and A-549 cell lines. CONCLUSION New pyrimidine-pyrazole derivatives were simply synthesized, in addition, some of them showed potential anticancer activity.
Collapse
Affiliation(s)
- Nermine A Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| | - Nermine S El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
- Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Hanan A Abdel Fattah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdulrahman S Alharbi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany M Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Adhikari A, Bhakta S, Ghosh T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ranjan A, Sharma D, Srivastava AK, Varma A, Magani SK, Joshi RK. Evaluation of anticancer activity of ferrocene based benzothiazole and β-ketooxothioacetal. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Venturini Filho E, Antoniazi MK, Ferreira RQ, dos Santos GFS, Pessoa C, Guimarães CJ, Vieira Neto JB, Silva AMS, Greco S. A green multicomponent domino Mannich‐Michael reaction to synthesize novel naphthoquinone‐polyphenols with antiproliferative and antioxidant activities. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eclair Venturini Filho
- Federal University of Espirito Santo: Universidade Federal do Espirito Santo Chemistry BRAZIL
| | - Mariana K Antoniazi
- Federal University of Espirito Santo: Universidade Federal do Espirito Santo Chemistry BRAZIL
| | - Rafael Q Ferreira
- Federal University of Espirito Santo: Universidade Federal do Espirito Santo Chemistry BRAZIL
| | | | - Claudia Pessoa
- Federal University of Ceara: Universidade Federal do Ceara Department of Physiology and Pharmacology BRAZIL
| | - Celina J. Guimarães
- Federal University of Ceara: Universidade Federal do Ceara Department of Physiology and Pharmacology BRAZIL
| | - José B. Vieira Neto
- Federal University of Ceara: Universidade Federal do Ceara Department of Physiology and Pharmacology BRAZIL
| | | | - Sandro Greco
- Universidade Federal do Espírito Santo Química Avenida Fernando Ferrari 514Goiabeiras 29075910 Vitória BRAZIL
| |
Collapse
|
8
|
Jadhav J, Das R, Kamble S, Chowdhury MG, Kapoor S, Gupta A, Vyas H, Shard A. Ferrocene-Based Modulators of Cancer-Associated Tumor Pyruvate Kinase M2. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|