1
|
Alexandrova LA, Oskolsky IA, Makarov DA, Jasko MV, Karpenko IL, Efremenkova OV, Vasilyeva BF, Avdanina DA, Ermolyuk AA, Benko EE, Kalinin SG, Kolganova TV, Berzina MY, Konstantinova ID, Chizhov AO, Kochetkov SN, Zhgun AA. New Biocides Based on N4-Alkylcytidines: Effects on Microorganisms and Application for the Protection of Cultural Heritage Objects of Painting. Int J Mol Sci 2024; 25:3053. [PMID: 38474298 DOI: 10.3390/ijms25053053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.
Collapse
Affiliation(s)
| | - Ivan A Oskolsky
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Dmitry A Makarov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Maxim V Jasko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow 119021, Russia
| | - Byazilya F Vasilyeva
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya, Moscow 119021, Russia
| | - Darya A Avdanina
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Anna A Ermolyuk
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Elizaveta E Benko
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | - Stanislav G Kalinin
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| | | | - Maria Ya Berzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Irina D Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexander O Chizhov
- Zelinsky Institute of Organic Chemistry RAS 47 Leninsky Ave, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov Str., Moscow 119991, Russia
| | - Alexander A Zhgun
- Research Center of Biotechnology RAS, 33 Leninsky Ave, Moscow 119071, Russia
| |
Collapse
|
2
|
Al-Tuwaijri HM, Al-Abdullah ES, El-Rashedy AA, Ansari SA, Almomen A, Alshibl HM, Haiba ME, Alkahtani HM. New Indazol-Pyrimidine-Based Derivatives as Selective Anticancer Agents: Design, Synthesis, and In Silico Studies. Molecules 2023; 28:molecules28093664. [PMID: 37175074 PMCID: PMC10180490 DOI: 10.3390/molecules28093664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
In this research study, the authors successfully synthesized potent new anticancer agents derived from indazol-pyrimidine. All the prepared compounds were tested for in vitro cell line inhibitory activity against three different cancerous cell lines. Results demonstrated that five of the novel compounds-4f, 4i, 4a, 4g, and 4d-possessed significant cytotoxic inhibitory activity against the MCF-7 cell line, with IC50 values of 1.629, 1.841, 2.958, 4.680, and 4.798 μM, respectively, compared to the reference drug with an IC50 value of 8.029 μM, thus demonstrating promising suppression power. Compounds 4i, 4g, 4e, 4d, and 4a showed effective cytotoxic activity stronger than the standard against Caco2 cells. Moreover, compounds 4a and 4i exhibited potent antiproliferative activity against the A549 cell line that was stronger than the reference drug. The most active products, 4f and 4i, werr e further examined for their mechanism of action. It turns out that they were capable of activating caspase-3/7 and, therefore, inducing apoptosis. However, produced a higher safety profile than the reference drug, towards the normal cells (MCF10a). Furthermore, the dynamic nature, binding interaction, and protein-ligand stability were explored through a Molecular Dynamics (MD) simulation study. Various analysis parameters (RMSD, RMSF, RoG, and SASA) from the MD simulation trajectory have suggested the stability of the compounds during the 20 ns MD simulation study. In silico ADMET results revealed that the synthesized compounds had low toxicity, good solubility, and an absorption profile since they met Lipinski's rule of five and Veber's rule. The present research highlights the potential of derivatives with indazole scaffolds bearing pyrimidine as a lead compound for designing anticancer agents.
Collapse
Affiliation(s)
- Hanaa M Al-Tuwaijri
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ebtehal S Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed A El-Rashedy
- Department of Natural and Microbial Products National Research Center, El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanan M Alshibl
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mogedda E Haiba
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Center, El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|