1
|
Zhou Y, Xu D, Zhang Y, Zhou H. G-Quadruplexes in Tumor Immune Regulation: Molecular Mechanisms and Therapeutic Prospects in Gastrointestinal Cancers. Biomedicines 2025; 13:1057. [PMID: 40426885 PMCID: PMC12109316 DOI: 10.3390/biomedicines13051057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
G-quadruplex (G4) is a noncanonical nucleic acid secondary structure self-assembled by guanine-rich sequences. Recent studies have not only revealed the key role of G4 in gene regulation, DNA replication, and telomere maintenance but also showed that it plays a core role in regulating the tumor immune microenvironment. G4 participates in tumor immune escape and the inhibition of immune response by regulating immune checkpoint molecules, cytokine expression, immune cell function, and their interaction network, thus significantly affecting the effect of tumor immunotherapy. This article systematically reviews the molecular mechanism of G4 in tumor immune regulation, especially gastrointestinal tumors, and explores the potential and application prospects of G4-targeted drug strategies in improving anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaixiang Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Li HX, He YM, Fei J, Guo M, Zeng C, Yan PJ, Xu Y, Qin G, Teng FY. The G-quadruplex ligand CX-5461: an innovative candidate for disease treatment. J Transl Med 2025; 23:457. [PMID: 40251554 PMCID: PMC12007140 DOI: 10.1186/s12967-025-06473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The ribosomal DNA (rDNA) plays a vital role in regulating protein synthesis by ribosome biogenesis, essential for maintaining cellular growth, metabolism, and more. Cancer cells show a high dependence on ribosome biogenesis and exhibit elevated rDNA transcriptional activity. CX-5461, also known as Pidnarulex, is a First-in-Class anticancer drug that has received 'Fast Track Designation' approval from the FDA. Initially reported to inhibit Pol I-driven rDNA transcription, CX-5461 was recently identified as a G-quadruplex structure (G4) stabilizer and is currently completed or undergoing multiple Phase I clinical trials in patients with breast and ovarian cancers harboring BRCA1/2, PALB2, or other DNA repair deficiencies. Additionally, preclinical studies have confirmed that CX-5461 demonstrates promising therapeutic effects against multifarious non-cancer diseases, including viral infections, and autoimmune diseases. This review summarizes the mechanisms of CX-5461, including its transcriptional inhibition of rDNA, binding to G4, and toxicity towards topoisomerase, along with its research status and therapeutic effects across various diseases. Lastly, this review highlights the targeted therapy strategy of CX-5461 based on nanomedicine delivery, particularly the drug delivery utilizing the nucleic acid aptamer AS1411, which contains a G4 motif to specifically target the highly expressed nucleolin on the surface of tumor cell membranes; It also anticipates the strategy of coupling CX-5461 with peptide nucleic acids and locked nucleic acids to achieve dual targeting, thereby realizing individualized G4-targeting by CX-5461. This review aims to provide a general overview of the progress of CX-5461 in recent years and suggest potential strategies for disease treatment involving ribosomal RNA synthesis, G4, and topoisomerase.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
| | - Yi-Meng He
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Fang-Yuan Teng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Batra S, Allwein B, Kumar C, Devbhandari S, Brüning JG, Bahng S, Lee CM, Marians KJ, Hite RK, Remus D. G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation. Science 2025; 387:eadt1978. [PMID: 40048517 DOI: 10.1126/science.adt1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/15/2024] [Indexed: 03/15/2025]
Abstract
DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork collisions with preformed G4s in the parental DNA using reconstituted yeast and human replisomes. We demonstrate that a single G4 in the leading strand template is sufficient to stall replisomes by arresting the CMG helicase. Cryo-electron microscopy structures of stalled yeast and human CMG complexes reveal that the folded G4 is lodged inside the central CMG channel, arresting translocation. The G4 stabilizes the CMG at distinct translocation intermediates, suggesting an unprecedented helical inchworm mechanism for DNA translocation. These findings illuminate the eukaryotic replication fork mechanism under normal and perturbed conditions.
Collapse
Affiliation(s)
- Sahil Batra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied PhD Program, Weill Cornell Medical Graduate School, Weill Cornell Medicine, New York, NY, USA
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soon Bahng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chong M Lee
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Chiou SJ, Lin YC, Chang YF, Chen YF, Lo TH, Tsai CS, Liao HC, Tsai PY, Chuang SH, Huang JJ. Copper(I)-Catalyzed Intramolecular Tandem Acylation/ O-Arylation under Mild Conditions: Synthesis of Benzofuro[3,2- c]quinolin-6(5 H)-ones and G-Quadruplex-Targeting Analogues. J Org Chem 2025; 90:794-805. [PMID: 39726144 PMCID: PMC11731314 DOI: 10.1021/acs.joc.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
This paper presents a copper(I)-catalyzed intramolecular tandem acylation/O-arylation of methyl 2-[2-(2-bromophenyl)acetamido]benzoates for the synthesis of benzofuro[3,2-c]quinolin-6(5H)-ones under mild conditions. The combination of CuI, 1,10-phenanthroline, and K2CO3 in DMSO was found to be the optimal reaction condition, producing the target products in high yields (84-99%) at 70 °C for 16 h. The tandem reaction was applicable to substrates bearing halo, electron-withdrawing, and electron-donating groups at their phenyl moieties with a broad substrate scope. Further derivation produced compounds serving as G-quadruplex DNA (G4 DNA) stabilizers. The most potent analogue, 2,9-bis{[3-(diethylamino)propyl]amino}-5-methylbenzofuro[3,2-c]quinolin-6(5H)-one, significantly increased the melting temperature of G4 DNA by 9.8 °C at 1.0 μM, approximately 4.6 times more selective than duplex DNA. The G4 stabilizer also showed anticancer activity, actively inhibiting MDA-MB-231 cancer cells with a GI50 value of 0.41 μM.
Collapse
Affiliation(s)
- Show-Jen Chiou
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| | - Yi-Chien Lin
- Development
Center for Biotechnology, National Biotechnology Research Park, Taipei 11571, Taiwan
| | - Yi-Fu Chang
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| | - Yu-Fen Chen
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| | - Tzu-Hao Lo
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| | - Chia-Shen Tsai
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| | - Hung-Chun Liao
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| | - Pei-Yi Tsai
- Development
Center for Biotechnology, National Biotechnology Research Park, Taipei 11571, Taiwan
| | - Shih-Hsien Chuang
- Development
Center for Biotechnology, National Biotechnology Research Park, Taipei 11571, Taiwan
| | - Jiann-Jyh Huang
- Institute
of BioPharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 804201, Taiwan
- Department
of Applied Chemistry, National Chiayi University, No. 300, Syuefu Road, Chiayi 60004, Taiwan
| |
Collapse
|
5
|
Siteni S, Grichuk A, Shay JW. Telomerase in Cancer Therapeutics. Cold Spring Harb Perspect Biol 2024; 16:a041703. [PMID: 39349313 PMCID: PMC11610755 DOI: 10.1101/cshperspect.a041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
While silent in normal differentiated human tissues, telomerase is reactivated in most human cancers. Thus, telomerase is an almost universal oncology target. This update describes preclinical and clinical advancements using a variety of approaches to target telomerase. These include direct telomerase inhibitors, G-quadruplex DNA-interacting ligands, telomerase-based vaccine platforms, telomerase promoter-driven attenuated viruses, and telomerase-mediated telomere targeting approaches. While imetelstat has been recently approved by the Food and Drug Administration (FDA), several other approaches are in late-stage clinical development. The pros and cons of the major approaches will be reviewed.
Collapse
Affiliation(s)
- Silvia Siteni
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| | - Anthony Grichuk
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
Sanchez-Martin V. Opportunities and challenges with G-quadruplexes as promising targets for drug design. Expert Opin Drug Discov 2024; 19:1339-1353. [PMID: 39291583 DOI: 10.1080/17460441.2024.2404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION G-quadruplexes (G4s) are secondary structures formed in guanine-rich regions of nucleic acids (both DNA and RNA). G4s are significantly enriched at regulatory genomic regions and are associated with important biological processes ranging from telomere homeostasis and genome instability to transcription and translation. Importantly, G4s are related to health and diseases such as cancer, neurological diseases, as well as infections with viruses and microbial pathogens. Increasing evidence suggests the potential of G4s for designing new diagnostic and therapeutic strategies although in vivo studies are still at early stages. AREAS COVERED This review provides an updated summary of the literature describing the impact of G4s in human diseases and different approaches based on G4 targeting in therapy. EXPERT OPINION Within the G4 field, most of the studies have been performed in vitro and in a descriptive manner. Therefore, detailed mechanistic understanding of G4s in the biological context remains to be deciphered. In clinics, the use of G4s as therapeutic targets has been hindered due to the low selectivity profile and poor drug-like properties of G4 ligands. Future research on G4s may overcome current methodological and interventional limitations and shed light on these unique structural elements in the pathogenesis and treatment of diseases.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), Seville, Spain
- Departament of Genetics, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Xiao C, Li Y, Liu Y, Dong R, He X, Lin Q, Zang X, Wang K, Xia Y, Kong L. Overcoming Cancer Persister Cells by Stabilizing the ATF4 Promoter G-quadruplex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401748. [PMID: 38994891 PMCID: PMC11425212 DOI: 10.1002/advs.202401748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Persister cells (PS) selected for anticancer therapy have been recognized as a significant contributor to the development of treatment-resistant malignancies. It is found that imposing glutamine restriction induces the generation of PS, which paradoxically bestows heightened resistance to glutamine restriction treatment by activating the integrated stress response and initiating the general control nonderepressible 2-activating transcription factor 4-alanine, serine, cysteine-preferring transporter 2 (GCN2-ATF4-ASCT2) axis. Central to this phenomenon is the stress-induced ATF4 translational reprogramming. Unfortunately, directly targeting ATF4 protein has proven to be a formidable challenge because of its flat surface. Nonetheless, a G-quadruplex structure located within the promoter region of ATF4 (ATF4-G4) is uncovered and resolved, which functions as a transcriptional regulator and can be targeted by small molecules. The investigation identifies the natural compound coptisine (COP) as a potent binder that interacts with and stabilizes ATF4-G4. For the first time, the high-resolution structure of the COP-ATF4-G4 complex is determined. The formation of this stable complex disrupts the interaction between transcription factor AP-2 alpha (TFAP2A) and ATF4-G4, resulting in a substantial reduction in intracellular ATF4 levels and the eventual death of cancer cells. These seminal findings underscore the potential of targeting the ATF4-G4 structure to yield significant therapeutic advantages within the realm of persister cancer cells induced by glutamine-restricted therapy.
Collapse
Affiliation(s)
- Chengmei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yipu Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yushuang Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Ruifang Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Xiaoyu He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Qing Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Xin Zang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Kaibo Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Yuanzheng Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
- Shenzhen Research Institute of China Pharmaceutical UniversityShenzhen518057China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product ResearchSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
8
|
Ciaco S, Aronne R, Fiabane M, Mori M. The Rise of Bacterial G-Quadruplexes in Current Antimicrobial Discovery. ACS OMEGA 2024; 9:24163-24180. [PMID: 38882119 PMCID: PMC11170735 DOI: 10.1021/acsomega.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Antimicrobial resistance (AMR) is a silent critical issue that poses several challenges to health systems. While the discovery of novel antibiotics is currently stalled and prevalently focused on chemical variations of the scaffolds of available drugs, novel targets and innovative strategies are urgently needed to face this global threat. In this context, bacterial G-quadruplexes (G4s) are emerging as timely and profitable targets for the design and development of antimicrobial agents. Indeed, they are expressed in regulatory regions of bacterial genomes, and their modulation has been observed to provide antimicrobial effects with translational perspectives in the context of AMR. In this work, we review the current knowledge of bacterial G4s as well as their modulation by small molecules, including tools and techniques suitable for these investigations. Finally, we critically analyze the needs and future directions in the field, with a focus on the development of small molecules as bacterial G4s modulators endowed with remarkable drug-likeness.
Collapse
Affiliation(s)
- Stefano Ciaco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Rossella Aronne
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Martina Fiabane
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
9
|
Figueiredo J, Mergny JL, Cruz C. G-quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci 2024; 340:122481. [PMID: 38301873 DOI: 10.1016/j.lfs.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Guanine-rich sequences can form G-quadruplexes (G4) in living cells, making these structures promising anti-cancer targets. Compounds able to recognize these structures have been investigated as potential anticancer drugs; however, no G4 binder has yet been approved in the clinic. Here, we describe G4 ligands structure-activity relationships, in vivo effects as well as clinical trials. Addressing G4 ligand characteristics, targeting challenges, and structure-activity relationships, this review provides insights into the development of potent and selective G4-targeting molecules for therapeutic applications.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau cedex, France; Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|